Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(x + 7) - (2x + 3).(x - 1) - 8 = 6x
<=> (2x + 14) - (2x + 3)(x - 1) - 8 - 6x = 0
<=> 2x + 14 - (2x2 + 3x - 2x - 3) - 8 - 6x = 0
<=> 2x + 14 - (2x2 + x - 3) - 8 - 6x = 0
<=> 2x + 14 - 2x2 - x + 3 - 8 - 6x = 0
<=> -2x2 - 5x + 6 = 0
<=> 2x2 + 5x - 6 = 0
<=> \(x^2+\frac{5}{2}x-3=0\)
\(\Leftrightarrow x^2+2.x.\frac{5}{4}+\frac{25}{16}-\frac{73}{16}=0\)
\(\Leftrightarrow x^2+2.x.\frac{5}{4}+\frac{25}{16}=\frac{73}{16}\)
\(\Leftrightarrow\left(x+\frac{5}{4}\right)^2=\frac{73}{16}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{5}{4}=\frac{73}{16}\\x+\frac{5}{4}=-\frac{73}{16}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{73}{16}-\frac{5}{4}\\x=-\frac{73}{16}-\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{53}{16}\\x=-\frac{93}{16}\end{cases}}\)
2(x+7)-(2x+3)(x-1)-8=6x
\(\Leftrightarrow2x+14-2x^2+2x-3x+3-8=6x\)
\(\Leftrightarrow\) \(-2x^2+2x+2x-3x+3-8+14=6x\)
\(\Leftrightarrow-2x^2+x+9=6x\)
\(\Leftrightarrow-2x^2-5x+9=0\)
\(\Leftrightarrow\left(x-\left(\frac{-5+\sqrt{97}}{4}\right)\right)\left(x+\left(\frac{-5-\sqrt{97}}{4}\right)\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{-5+\sqrt{97}}{4}=0\\x+\frac{-5-\sqrt{97}}{4}=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+97}{4}\\x=\frac{5-\sqrt{97}}{4}\end{cases}}\)
\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(\Rightarrow8x+16-5x^2-10x+4x^2+4x-8x-8=x^2-4\)
\(\Rightarrow-6x-x^2-8-x^2+4=0\)
\(\Rightarrow-6x-2x^2-4=0\)
\(\Rightarrow-2\left(3x+x^2+2\right)=0\)
\(\Rightarrow\left(x+1,5\right)^2-0,25=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-1\end{cases}}}\)
(x+1)(x2-x+1)-x(x-3)(x+3)=8
x3+1-x(x2-9)=8
x3+1-x3-9x=8
(x3-x3)+(1-8)-9x=0
-7-9x=0
-9x=-7
x=7/9
(2\(^x\)-8)\(^3\)=(4\(^x\)+2\(^x\)+5)\(^3\)-(4\(^x\)+13)\(^3_{ }\)
(2\(^x\)-8)\(^3\)=[(4\(^x\)+2\(^x\)+5) - (4\(^x\)+13)].[(4\(^x\)... + (4\(^x\)+13)\(^2\)]
(2\(^x\) - 8)\(^3\) = (2\(^x\)-8).[(4\(^x\)+2\(^x\)+5)\(^2\)+(4\(^x\)+... + (4\(_{ }^x\)+13)\(^2\)]
2\(^x\) = 8 \(\Rightarrow\) x = 3
hoặc (2\(^x\)-8)\(^2\) = (4\(^x\)+2\(^x\)+5)\(^2\)+(4\(^x\)+2\(^x\)+5)(4\(^x\)+... + (4\(^x\)+13)\(^2\)
(4\(^x\)+2\(^x\)+5)\(^2\) - (2\(^x\)-8)\(^2\)+(4\(^x\)+2\(_{ }^x\)+5)(4\(^x\)+13) + (4\(^x\)+13)\(^2\) = 0
[(4^x+2^x+5)-(2^x-8)]*[(4^x+2^x+5)+(2^... + (4^x+3)*[(4^x+2^x+5)+(4^x+13)]=0
(4^x+13)*(4^x+2*2^x-3) + (4^x+3)*(2*4^x+2^x+18)=0
(4^x+13)[(4^x+2*2^x-3) + (2*4^x+2^x+18)]=0
4^x+13=0 (VN)
hoặc 3*4^x + 3*2^x +15=0
đặt t = 2\(^x\)( t > 0)
t\(^2\) + t + 5=0 ptvn
( Xin lỗi bạn , vì đoạn cuối mình mỏi tay nên ghi vậy đỡ nha ! (*) là dấu nhân nha bạn )
<=> 4(x^2 + 2x + 1) + 4x^2 - 4x +1 - 8(x^2 - 1) = 11
<=> 4x^2 + 8x + 4 + 4x^2 - 4x +1 - 8x^2 +8 - 11 = 0
<=> 4x + 2 = 0
<=> x = - 1/2
\(x\left(x^2+x+1\right)=8\left(x^2+x+1\right)\)
\(\Leftrightarrow\left(x-8\right)\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^2+x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô-nghiệm\right)\end{matrix}\right.\)
x( x+8) + x (3 - x ) = -22
=> x( x+8 + 3 - x ) = -22
=> 11x = -22
=> x = -2
Vậy x = -2
`x (x+8) +x(3-x)=-22`
`->x^2 +8x+3x-x^2=-22`
`-> 11x=-22`
`->x=-2`
Vậy `x=-2`