K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2017

Rút gọn VT = 8x + 24. Phương trình trở thành 8x + 24 = 16. Giải phương trình thu được x = -1.

1: =>x^2+4x-21=0

=>(x+7)(x-3)=0

=>x=3 hoặc x=-7

2: =>(2x-5-4)(2x-5+4)=0

=>(2x-9)(2x-1)=0

=>x=9/2 hoặc x=1/2

3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15

=>-9x^2+27x+9x^2+18x+9=15

=>18x=15-9-27=-21

=>x=-7/6

6: =>4x^2+4x+1-4x^2-16x-16=9

=>-12x-15=9

=>-12x=24

=>x=-2

7: =>x^2+6x+9-x^2-4x+32=1

=>2x+41=1

=>2x=-40

=>x=-20

20 tháng 7 2023

b) \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x-3\right)\left(x+3\right)=8\)

\(\Rightarrow x^3-1-x\left(x^2-9\right)=8\)

\(\Rightarrow x^3-1-x^3+9x=8\)

\(\Rightarrow9x=9\Rightarrow x=1\)

c) \(\left(x^2+2\right)\left(x-4\right)-\left(x+2\right)\left(x^2+4x+4\right)=-16\)

\(\Rightarrow x^3-4x^2+2x-8-\left(x+2\right)\left(x+2\right)^2=-16\)

\(\Rightarrow x^3-4x^2+2x-8-\left(x+2\right)^3=-16\)

\(\Rightarrow x^3-4x^2+2x-8-\left(x^3+6x^2+12x+8\right)=-16\)

\(\Rightarrow x^3-4x^2+2x-8-x^3-6x^2-12x-8=-16\)

\(\Rightarrow-10x^2-10x-16=-16\)

\(\Rightarrow10x^2+10x=0\)

\(\Rightarrow10x\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

2: \(3x\left(x-4\right)+2x-8=0\)

=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(3x+2\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)

3: 4x(x-3)+x2-9=0

=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(4x+x+3\right)=0\)

=>\(\left(x-3\right)\left(5x+3\right)=0\)

=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)

4: \(x\left(x-1\right)-x^2+3x=0\)

=>\(x^2-x-x^2+3x=0\)

=>2x=0

=>x=0

5: \(x\left(2x-1\right)-2x^2+5x=16\)

=>\(2x^2-x-2x^2+5x=16\)

=>4x=16

=>x=4

31 tháng 7 2023

1) \(8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x\right)^2-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Leftrightarrow2x-1=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

2) \(x^3-6x^2+12x-8=27\)

\(\Leftrightarrow x^3-3\cdot x^2\cdot2+3\cdot2^2\cdot x-2^3=27\)

\(\Leftrightarrow\left(x-2\right)^3=27\)

\(\Leftrightarrow\left(x-2\right)^3=3^3\)

\(\Leftrightarrow x-2=3\)

\(\Leftrightarrow x=3+2\)

\(\Leftrightarrow x=5\)

3) \(x^2-8x+16=5\left(4-x\right)^3\)

\(\Leftrightarrow\left(x-4\right)^2=5\left(4-x\right)^3\)

\(\Leftrightarrow\left(4-x\right)^2=5\left(4-x\right)^3\)

\(\Leftrightarrow5\left(4-x\right)=1\)

\(\Leftrightarrow4-x=\dfrac{1}{5}\)

\(\Leftrightarrow x=4-\dfrac{1}{5}\)

\(\Leftrightarrow x=\dfrac{19}{5}\)

4) \(\left(2-x\right)^3=6x\left(x-2\right)\)

\(\Leftrightarrow8-12x+6x^2-x^3=6x^2-12x\)

\(\Leftrightarrow-12x+6x^2-6x^2+12x=8-x^3\)

\(\Leftrightarrow8-x^3=0\)

\(\Leftrightarrow x^3=8\)

\(\Leftrightarrow x^3=2^3\)

\(\Leftrightarrow x=2\)

5) \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)

\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)

\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x-3x\right)+\left(3x^2+3x^2\right)+\left(1+1\right)-6x^2+12x-6=-10\)

\(\Leftrightarrow0+0+0+\left(6x^2-6x^2\right)+12x-4=-10\)

\(\Leftrightarrow12x-4=-10\)

\(\Leftrightarrow12x=-10+4\)

\(\Leftrightarrow12x=-6\)

\(\Leftrightarrow x=\dfrac{-6}{12}\)

\(\Leftrightarrow x=-\dfrac{1}{2}\)

6) \(\left(3-x\right)^3-\left(x+3\right)^3=36x^2-54x\)

\(\Leftrightarrow27-27x+9x^2-x^3-x^3-9x^2-27x-27=36x^2-54x\)

\(\Leftrightarrow-54x-2x^3=36x^2-54x\)

\(\Leftrightarrow-2x^3=36x^2\)

\(\Leftrightarrow-2x^3-36x^2=0\)

\(\Leftrightarrow-2x^2\left(x+18\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x^2=0\\x+18=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-18\end{matrix}\right.\)

25 tháng 8 2019

a) \(\left(x-3\right)^2-4=0\)

\(\left(x-3\right)^2=0+4\)

\(\left(x-3\right)^2=4\)

\(\left(x-3\right)^2=\pm4\)

\(\left(x-3\right)^2=\pm2^2\)

\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

\(4x^2+12x+9-4x^2+1=22\)

\(12x+10=22\)

\(12x=22-10\)

\(12x=12\)

\(x=1\)

c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)

\(16x^2-9-16x^2+40x-25=16\)

\(-34+40x=16\)

\(40x=16+34\)

\(40x=50\)

\(x=\frac{50}{40}=\frac{5}{4}\)

d) \(x^3-9x^2+27x-27=-8\)

\(x^3-9x^2+27x-27+8=0\)

\(x^3-9x^2+27x-19=0\)

\(\left(x^2-8x+19\right)\left(x-1\right)=0\)

Vì \(\left(x^2-8x+19\right)>0\) nên:

\(x-1=0\)

\(x=1\)

e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)

\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)

\(3x+1=2\)

\(3x=2-1\)

\(3x=1\)

\(x=\frac{1}{3}\)

Bài 2: 

a: Ta có: \(x\left(2x-1\right)-2x+1=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)

8 tháng 10 2019

ta có

\(5x=-3y=4z\)

\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{z}{15}\)

\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{3z}{45}=\frac{x-y+3z}{12+20+45}=\frac{7}{77}=\frac{1}{11}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1}{11}.12=\frac{12}{11}\\-y=\frac{1}{11}.20=\frac{20}{11}\\3z=\frac{1}{11}.45=\frac{45}{11}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{12}{11}\\y=-\frac{20}{11}\\z=\frac{45}{11}:3=\frac{15}{11}\end{cases}}\)

Vậy \(\hept{\begin{cases}x=\frac{12}{11}\\y=\frac{-20}{11}\\z=\frac{15}{11}\end{cases}}\)