Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
\(A=\frac{2x+6}{\left(x-3\right)\left(x-2\right)}=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x-2\right)}\)
\(B=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)
\(A=\frac{2x+6}{\left(x-3\right)\left(x-2\right)}=\frac{2\left(x+3\right)}{\left(x-3\right)\left(x-2\right)}\)
\(B=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)
(3x+2)(2x+9)-(x+2)(6x+1)=(x+1)-(x-6)
<=>(6x2+27x+4x+18)-(6x2+x+12x+2)=x+1-x+6
<=>6x2+31x+18-6x2-13x-2=7
<=>18x+16=7
<=>18x=-9
<=>x=-1/2
`Answer:`
a. \(x^3+6x^2+12=19\)
\(\Leftrightarrow x^3+6x^2+12x-19=0\)
\(\Leftrightarrow x^3-x^2+7x^2-7x+19x-19=0\)
\(\Leftrightarrow x^2.\left(x-1\right)+7x\left(x-1\right)+19\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+19\right)=0\)
Ta có \(x^2+7x+19=x^2+2x.3,5+12,25+6,75=\left(x+3,5\right)^2+6,75>0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
b. \(5\left(x+9\right)^2.\left(x-4\right)^3-10\left(x+9\right)^3.\left(x-4\right)^2=0\)
\(\Leftrightarrow5\left(x+9\right)^2.\left(x-4\right)^2.[x-4-2\left(x+9\right)]=0\)
\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(x-4-2x-18\right)=0\)
\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(-x-22\right)=0\)
\(\Leftrightarrow\left(x+9\right)^2=0\) hoặc \(\left(x-4\right)^2=0\) hoặc \(-x-22=0\)
\(\Leftrightarrow x+9=0\) hoặc \(x-4=0\) hoặc \(-x=22\)
\(\Leftrightarrow x=-9\) hoặc \(x=4\) hoặc \(x=-22\)
c. \(\left(2x+3\right)^2+\left(x-2\right)^2-2\left(2x+3\right)\left(x-2\right)\)
\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left(2x+3-x+2\right)^2\)
\(=\left(x+5\right)^2\)
Thực hiện phép tính
a, 6x3y5z : 3xy3z=2x2y2
b, \(\frac{3x+6}{x+2}+\frac{2x+4}{x+2}\)
\(=\frac{3\left(x+2\right)}{x+2}+\frac{2\left(x+2\right)}{x+2}\)
=3+2=5
b:
1: \(\Leftrightarrow2x\left(x+2\right)=0\)
=>x=0 hoặc x=-2
\(x^2-6x+9=\left(2x+1\right)^2\)
\(\Rightarrow\left(x-3\right)^2=\left(2x+1\right)^2\)
\(\Rightarrow\left(x-3\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow\left(x-3-2x-1\right)\left(x-3+2x+1\right)=0\)
\(\Rightarrow-\left(x+4\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+4=0\\3x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-4\\x=\frac{2}{3}\end{cases}}\)
x^2-6x+9=(2x+1)^2
<=>x2-6x+9=4x2+4x+1
<=>3x2+10x-8=0
<=>3x2-2x+12x-8=0
<=>x(3x-2)+4(3x-2)=0
<=>(x+4)(3x-2)=0
<=>x=-4 hoặc x=2/3
a, +) ĐKXĐ: \(x\ne-3,x\ne2\)
\(A=\frac{2x+6}{\left(x+3\right)\left(x-2\right)}=\frac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{2}{x-2}\)
+) ĐKXĐ: \(x^2-6x+9\ne0\Leftrightarrow\left(x-3\right)^2\ne0\Leftrightarrow x\ne3\)
\(B=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)
b, +)Để A=0 <=> \(\frac{2}{x-2}=0\Leftrightarrow2=0\left(loại\right)\)
Vậy k có x thỏa mãn để A=0
+)Để B=0 <=> \(\frac{x+3}{x-3}=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\left(TMĐK\right)\)
Vậy x=-3 thì B=0
Thiếu đề rồi bạn
\(\dfrac{x}{x^2-9}+\dfrac{2}{x^2+6x+9}=\dfrac{x\left(x+3\right)+2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)^2}\\ =\dfrac{x^2+5x-6}{\left(x-3\right)\left(x+3\right)^2}=\dfrac{\left(x-1\right)\left(x+6\right)}{\left(x-3\right)\left(x+3\right)^2}\)