Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
b) \(3^x+3^{x+2}=2430\)
\(\Rightarrow3^x.1+3^x.3^2=2430\)
\(\Rightarrow3^x.\left(1+3^2\right)=2430\)
\(\Rightarrow3^x.10=2430\)
\(\Rightarrow3^x=2430:10\)
\(\Rightarrow3^x=243\)
\(\Rightarrow3^x=3^5\)
\(\Rightarrow x=5\)
Vậy \(x=5.\)
c) \(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3.\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(2x-15\right)^3=0\\\left(2x-15\right)^2-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x-15=0\\\left(2x-15\right)^2=1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2x=15\\2x-15=\pm1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=15:2\\2x-15=1\\2x-15=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{15}{2}\\2x=16\\2x=14\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{15}{2}\\x=8\\x=7\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{15}{2};8;7\right\}.\)
Chúc bạn học tốt!
a)\(\left(\frac{9}{2}-2x\right)\left(\frac{-11}{2}\right)=\frac{-11}{15}\)
\(-\frac{99}{4}-\left(-11x\right)=\frac{-11}{15}\)
\(-\frac{99}{4}+11x=\frac{-11}{15}\)
\(11x=\frac{-11}{15}-\left(-\frac{90}{4}\right)\)
\(11x=\frac{653}{30}\)
\(x=\frac{653}{30}:11\)
\(x=\frac{653}{330}\)
Vậy \(x=\frac{653}{330}\)
b)\(\left(x-\frac{5}{6}\right):\frac{9}{21}=-\frac{7}{5}\)
\(\left(x-\frac{5}{6}\right)=-\frac{7}{5}.\frac{9}{21}\)
\(x-\frac{5}{6}=-\frac{3}{5}\)
\(x=\frac{7}{30}\)
Vậy \(x=\frac{7}{30}\)
c)2x+3x=-15
5x=-15
x=-15:5
x=-3
Vậy x=-3
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
a) \(\left|-\frac{2}{11}+\frac{3}{22}x\right|-\frac{1}{2}=\frac{5}{7}\)
=> \(\left|-\frac{2}{11}+\frac{3}{22}x\right|=\frac{17}{14}\)
=> \(\orbr{\begin{cases}-\frac{2}{11}+\frac{3}{22}x=\frac{17}{14}\\-\frac{2}{11}+\frac{3}{22}x=-\frac{17}{14}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{215}{21}\\x=-\frac{53}{7}\end{cases}}\)
b) \(-\frac{7}{8}x-5\frac{3}{4}=3\)
=> \(-\frac{7}{8}x-\frac{23}{4}=3\)
=> \(-\frac{7}{8}x=3+\frac{23}{4}=\frac{35}{4}\)
=> \(x=\frac{35}{4}:\left(-\frac{7}{8}\right)=\frac{35}{4}\cdot\left(-\frac{8}{7}\right)=-10\)
c) \(2x+\left(-\frac{2}{7}\right)-7=-11\)
=> \(2x-\frac{2}{7}-7=-11\)
=> \(2x=-11+7+\frac{2}{7}=-\frac{26}{7}\)
=> \(x=\left(-\frac{26}{7}\right):2=-\frac{13}{7}\)
d) \(\frac{3}{7}+x:\frac{14}{15}=\frac{1}{2}\)
=> \(x:\frac{14}{15}=\frac{1}{2}-\frac{3}{7}=\frac{1}{14}\)
=> \(x=\frac{1}{14}\cdot\frac{14}{15}=\frac{1}{15}\)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x+3y-z}{2\cdot2+3\cdot5-3}=\dfrac{32}{16}=2\)
Do đó: x=4; y=10; z=6