![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\left(2x-3\right)^{2012}+\left(y-\dfrac{2}{5}\right)^{2014}+\left|x+y-z\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\y-\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\y=\dfrac{2}{5}\\z=\dfrac{19}{10}\end{matrix}\right.\)
b: 2015-|x-2015|=x
=>|x-2015|=2015-x
=>x-2015<=0
hay x<=2015
d: |x-999|+|1998-2x|=0
=>x-999=0
hay x=999
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left|2x-3y\right|^{999}+\left(5y-2z\right)^{1000}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left|2x-3y\right|^{999}=0\\\left(5y-2z\right)^{1000}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left|2x-3y\right|=0\\5y-2z=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2x-3y=0\\5y=2z\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=3y\\\dfrac{y}{2}=\dfrac{z}{5}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{2}=\dfrac{z}{5}\end{matrix}\right.\)
\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{5}\)
Vậy với \(\forall x;y;z\in R\) sao cho \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{5}\) thì \(\left|2x-3y\right|^{999}+\left(5y-2z\right)^{1000}=0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\Leftrightarrow25\left(x+1\right)^4-25\left(x+1\right)^2-\left(x+1\right)^2+1=0\)
\(\Leftrightarrow\left[\left(x+1\right)^2-1\right]\left[25\left(x+1\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x+2\right)\cdot x\cdot\left(5x+4\right)\left(5x+6\right)=0\)
hay \(x\in\left\{0;-2;-\dfrac{4}{5};-\dfrac{6}{5}\right\}\)
b: \(x^2+x-1=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-1\right)=5\)
Do đó: PT có 2 nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{5}}{2}\\x_2=\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\)
d: \(\Leftrightarrow4x^2-4x+1-5\left(2x-1\right)-6=0\)
\(\Leftrightarrow\left(2x-1\right)^2-5\left(2x-1\right)-6=0\)
=>(2x-1-6)(2x-1+1)=0
=>(2x-7)2x=0
=>x=0 hoặc x=7/2
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\left|2x+5\right|+3=0\Rightarrow\left|2x+5\right|=0-3\Rightarrow\left|2x+5\right|=-3\)
Vì |x|\(\ge0\)\(\forall\)x mà |2x+5|=-3 nên không có giá trị x thỏa mãn
b, \(\left|x\right|-a=0\Rightarrow\left|x\right|=0+a\Rightarrow\left|x\right|=a\Rightarrow x=a;x=-a\)
Bây giờ mk chỉ làm đc 2 phép tính đầu còn phép tính sau lúc nào rảnh mk sẽ giúp nhé
cko mk 2 phép tính đầu nhá
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\left(2-x\right)\left(x+3\right)>0\Leftrightarrow\left(x-2\right)\left(x+3\right)< 0\)
Vì \(x+3>x-2\)
nên \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow-3< x< 2}\)
c, \(\left(5-2x\right)\left(x+4\right)>0\)
TH1 : \(\hept{\begin{cases}5-2x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{2}\\x>-4\end{cases}}\Leftrightarrow-4< x< \frac{5}{2}\)
TH2 : \(\hept{\begin{cases}5-2x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x< -4\end{cases}}\)( vô lí )
bạn làm tương tự nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
a , x.(2x+7)=0
(=) x = 0
2x + 7 = 0
(=) x = 0
2x = -7
(=) x = 0
x = -7/2
\(\left|x-999\right|+\left|1998-2x\right|=0\)
Vì \(\left|x\right|\ge0\)
mà \(\left|x-999\right|+\left|1998-2x\right|=0\)
\(=>\left[\begin{matrix}x-999=0\\1998-2x=0\end{matrix}\right.\)
=> \(\left[\begin{matrix}x=0+999\\2x=1998\end{matrix}\right.\)
\(=>\left[\begin{matrix}x=999\\x=999\end{matrix}\right.\)
Vậy x = 999