Tìm x biết:

 x + 5x^2 = 0 

giúp mình...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

      x + 5x2= 0

  x(1 + 5x) = 0

=> x =0 hoặc 1+5x = 0 => 5x = -1=> x= -0,2

Vậy: x=0 hoặc x= -0,2

Giải thích thêm: đầu tiên là mình sẽ phân tích đa thức trên thành nhân tử x(1 + 5x), khi đó kết quả phép nhân bằng 0 nên suy ra một trong các thừa số của phép nhân phải bằng 0, nên ta có thừa số thứ nhất x = 0 hoặc thừa số thứ hai (1 + 5x)=0, từ đó ta có thể tìm các giá trị của x.

Học tốt!

                       

6 tháng 9 2016

a/ PT <=> x + 27 = y(x -3)

<=> \(\frac{27+x}{x-3}=y\)

<=> \(1+\frac{30}{x-3}=\:y\)

Vì y > 10 đồng thời x -3 phải là ước của 30 nên có nghiệm (x,y) = (9, 6; 13, 4; 18, 3; 33, 2)

6 tháng 9 2016

b/ x+ 27 = y2

<=> 27 = (y - x)(y + x)

Tới đây thì đơn giản rồi bạn làm tiếp đi

19 tháng 10 2019

a) \(\frac{x^2+5x}{5x^2+x^3}\)

\(=\frac{x\left(x+5\right)}{x^2\left(x+5\right)}=\frac{1}{x}\)

b) \(\frac{x^4+x^2+1}{x^3+1}\)

\(=\frac{\left(x^2+x+1\right)\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(=\frac{x^2+x+1}{x+1}\)

19 tháng 10 2019

\(a)\frac{x^2+5x}{5x^2+x^3}=\frac{x\left(x+5\right)}{x^2\left(5+x\right)}=\frac{1}{x}\)

27 tháng 10 2019

tôi ko biết

27 tháng 10 2019

phân tích đa thức thành nhân tử

\(X^2-X+Y^2+Y+\frac{1}{2}=0\)

<=> \(\left(X^2-2X\frac{1}{2}+\frac{1}{4}\right)+\left(Y^2+2Y\frac{1}{2}+\frac{1}{4}\right)=0\)

<=>\(\left(X-\frac{1}{2}\right)^2+\left(Y+\frac{1}{2}\right)^2=0\)

Vì \(\left(X-\frac{1}{2}\right)^2\ge0\forall X\) ,   ,\(\left(Y+\frac{1}{2}\right)^2\ge0\forall Y\)

=> \(VT\ge0\forall X;Y\)

mà VT = 0

Từ 2 điều trên => \(\hept{\begin{cases}\left(X-\frac{1}{2}\right)^2=0\\\left(Y+\frac{1}{2}\right)^2=0\end{cases}}\)

<=>\(\hept{\begin{cases}X-\frac{1}{2}=0\\Y+\frac{1}{2}=0\end{cases}}\)

<=>\(\hept{\begin{cases}X=\frac{1}{2}\\Y=-\frac{1}{2}\end{cases}}\)

kết luận:

26 tháng 1 2017

a, ĐKXĐ: x\(\ne\)5, x\(\ne\)0, x\(\ne\)-5

b, B = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)

     = \(\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

     =\(\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2x^2-50}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)

    = \(\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

    =\(\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)=\(\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)=\(\frac{x-1}{2}\)

Với B = 0 thì\(\frac{x-1}{2}\)=0 => x = 1

Với B = \(\frac{1}{4}\)thì \(\frac{x-1}{2}\)=\(\frac{1}{4}\)=> x = 1,5

6 tháng 9 2017

Giải tiêu biểu câu a nhé.

a/ \(5x\left(2x-7\right)+2x\left(8-5x\right)=5\)

\(\Leftrightarrow19x+5=0\)

\(\Leftrightarrow x=-\frac{5}{19}\)

5 tháng 9 2017

cần câu mấy

10 tháng 8 2020

1. \(2-\sqrt{\left(3x+1\right)^2}=35\)

<=> \(\left|3x+1\right|=-33\) => pt vô nghiệm

2. \(\sqrt{\left(-2x+1\right)^2}+5=12\)

<=> \(\left|1-2x\right|=12-5\)

<=> \(\left|1-2x\right|=7\)

<=> \(\orbr{\begin{cases}1-2x=7\left(đk:x\le\frac{1}{2}\right)\\2x-1=7\left(đk:x>\frac{1}{2}\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}2x=-6\\2x=8\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-3\left(tm\right)\\x=4\left(tm\right)\end{cases}}\)

Vậy S = {-3; 4}

10 tháng 8 2020

3. ĐKXĐ: \(\sqrt{x^2-1}\ge0\) <=> \(x^2-1\ge0\) <=> \(x^2\ge1\) <=> \(\orbr{\begin{cases}x\ge1\\x\le1\end{cases}}\)

\(\sqrt{x^2-1}+4=0\) <=> \(\sqrt{x^2-1}=-4\)

=> pt vô nghiệm

4. Đk: \(\hept{\begin{cases}\sqrt{5x+7}\ge0\\\sqrt{x+3}>0\end{cases}}\) <=> \(\hept{\begin{cases}5x+7\ge0\\x+3>0\end{cases}}\) <=> \(\hept{\begin{cases}x\ge-\frac{7}{5}\\x>-3\end{cases}}\) => x \(\ge\)-7/5

Ta có: \(\frac{\sqrt{5x+7}}{\sqrt{x+3}}=4\)

<=> \(\left(\frac{\sqrt{5x+7}}{\sqrt{x+3}}\right)^2=16\)

<=> \(\frac{\left(\sqrt{5x+7}\right)^2}{\left(\sqrt{x+3}\right)^2}=16\)

<=> \(\frac{5x+7}{x+3}=16\)

=> \(5x+7=16\left(x+3\right)\)

<=> \(5x+7=16x+48\)

<=> \(5x-16x=48-7\)

<=> \(-11x=41\)

<=> \(x=-\frac{41}{11}\)ktm

=> pt vô nghiệm

17 tháng 12 2018

Bài giải còn nhiều thiếu sót.Mong bạn thông cảm.

\(x^4+2x^3-4x^2-5x-6=0\)

\(\Leftrightarrow\left(x+3\right)\left(\frac{x^4+2x^3-4x^2-5x-6}{x+3}\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^3-x^2-x-2\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left[\left(x-2\right)\left(\frac{x^3-x^2-x-2}{x-2}\right)\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\) hoặc \(x^2+x+1=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\) hoặc \(x^2+x+1=0\)

Ta sẽ c/m \(x^2+x+1=0\) vô nghiệm.Thật vậy:

\(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Mà \(\frac{3}{4}>0\Rightarrow x^2+x+1>0\Rightarrow\)vô nghiệm.

Vậy x = {-3;2}

18 tháng 12 2018

\(\left(x^4+x^3-6x^2\right)+\left(x^3+x^2-6x\right)+\left(x^2+x-6\right)=0\)

\(\Leftrightarrow x^2\left(x^2+x-6\right)+x\left(x^2+x-6\right)+\left(x^2+x-6\right)=0\)

\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+x-6\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)=0\)