Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\left|x-1\right|< 3\)
Mà \(\left|x-1\right|\ge0\forall x\)
\(\Rightarrow\left|x-1\right|\in\left\{0;1;2\right\}\\ \Rightarrow x-1\in\left\{0;1;-1;2;-2\right\}\\ \Rightarrow x\in\left\{1;2;0;3;-1\right\}\)
Vậy có 5 giá trị nguyên của x thỏa mãn đề bài. \(x\in\left\{x\in Z|-2< x< 4\right\}\)
Ta có: |x-1|<3
nên \(x-1\in\left\{-2;-1;0;1;2\right\}\)
hay có 5 số nguyên x thỏa mãn điều kiện |x-1|<3
1)
Xét \(\left|x\right|>3\)\(\Rightarrow\)\(C>0\)
Xét \(0\le\left|x\right|< 3\)\(\Rightarrow\)\(C< 0\)
+ Với \(\left|x\right|=0\)\(\Leftrightarrow\)\(x=0\) thì \(C=-2\)
+ Với \(\left|x\right|=1\)\(\Leftrightarrow\)\(x=\pm1\) thì \(C=-3\)
+ Với \(\left|x\right|=2\)\(\Leftrightarrow\)\(x=\pm2\) thì \(C=-6\)
Vậy GTNN của \(C=-6\) khi \(x=\pm2\)
2)
Xét \(x\ge0\)\(\Rightarrow\)\(x-\left|x\right|=0\)
Xét \(x< 0\)\(\Rightarrow\)\(x-\left|x\right|=2x< 0\)
Vậy GTLN của \(x-\left|x\right|=0\) khi \(x>0\)
Ví dụ một bài toán :
Tìm GTLN của B = 10-4 | x-2|
Vì |x-2| \(\ge0\forall x\)
\(\Rightarrow-4.\left|x-2\right|\le0\forall x\). Tại sao mà tìm GTLN mà lại nhỏ hơn hoặc bằng 0 ạ
xét x-5 > hoặc =0 => x> hoặc =5
khi đó biểu thức có dạng x-5-x=3
=> 5=3(vô lí)
xét x-5< 0=> x<5
khi đó biểu thức có dạng -(x-5)-x=3
=> -x+5-x=3
=> -2x+5=3
=> -2x=-2
=> x=1 (thoã mãn x<5)
vậy x=1
ket qua cua toi la x=1