Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử x dương thì ta có : x + 2 > x ; x + 3 > x
=> |x + 2| + |x + 3| > x (vô lý)
Giả sử x âm thì ta cũng có : |x + 2| > 0 ; |x + 3| > 0.
Mà x < 0
=> |x + 2| + |x + 3| > x (vô lý)
Vậy không tồn tại x thỏa mãn đề bài.
Với mọi x ra có :
\(\hept{\begin{cases}\left|x+1\right|\ge0\\\left|x+2\right|\ge0\\\left|x+3\right|\ge0\end{cases}}\) \(\Leftrightarrow\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\)
Mà \(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|=3x\)
\(\Leftrightarrow3x\ge0\)
\(\Leftrightarrow x\ge0\)
Với mọi \(x\ge0\) ta có :
| x + 1 | = x + 1
| x + 2| = x + 2
| x + 3| = x + 3
=> | x + 1 | + | x + 2| + | x + 3| = (x + 1) + ( x + 2) + ( x + 3) = 3x
=> 3x + 6 = 3x
=> x thuộc rỗng
Theo bài ra, ta có: /x/+/y/ = 10 => /x+y/ = 10 => x+y = +-10
Ta có : /x/ - /y/ = 10
/x - y/ = 10
\(\Rightarrow\)x - y = 10 hoặc x - y = -10
Vậy x - y = 10 hoặc x - y = -10
\(\left|x\right|>4\)
\(\Rightarrow\left|x\right|=\left\{5;6;7;.....\right\}\)
\(\Rightarrow x=\left\{\pm5;\pm6;\pm7;........\right\}\)
Vậy .........
Trả lời :
| x | > 4
=> x \(\in\){ \(\pm5\); \(\pm6\); \(\pm7\);... }
Vậy :...