Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-1)2+(x+3)2-5(x+7)(x-7)=0
\(\Leftrightarrow x^2-2x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow x^2-2x+1+x^2+6x+9-5x^2+245=0\)
\(\Leftrightarrow-3x^2+4x+255=0\)
\(\Leftrightarrow-3\left(x^2-\frac{4}{3}x\right)+255=0\)
\(\Leftrightarrow-3\left(x^2-2.x.\frac{2}{3}+\frac{4}{9}\right)+3.\frac{4}{9}+255=0\)
\(\Leftrightarrow-3\left(x-\frac{2}{3}\right)^2+\frac{769}{3}\)
\(\Leftrightarrow-3\left(x-\frac{2}{3}\right)^2=-\frac{769}{3}\)
\(\Leftrightarrow\left(x-\frac{2}{3}\right)^2=\frac{769}{9}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=\sqrt{\frac{769}{9}}\\x-\frac{2}{3}=-\sqrt{\frac{769}{9}}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\sqrt{\frac{769}{9}}+\frac{2}{3}=\frac{\sqrt{769}+2}{3}\\x=-\sqrt{\frac{769}{9}}+\frac{2}{3}=\frac{2-\sqrt{769}}{3}\end{cases}}\)
Vậy \(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{769}+2}{3}\\x=\frac{2-\sqrt{769}}{3}\end{cases}}\)
VT = (x - 7)2 - (x + 3)(x - 3) = (x2 - 14x + 49) - (x2 - 9) = x2 - 14x + 49 - x2 + 9 = 58 - 14x = 10 => 14x = 48 => x =\(3\frac{3}{7}\)
a) x(x + 5) - (x + 3)2 = 0
<=> x2 + 5x - (x2 + 2.x.3 + 32) = 0
<=> x2 + 5x - x2 - 6x - 9 = 0
<=> -x - 9 = 0
<=> -x = 9
<=> x = -9
b) (2x + 1)2 - (4x - 3)(x + 1) = 10
<=> 4x2 + 4x + 1 - (4x2 + 4x - 3x - 3) = 10
<=> 4x2 + 4x + 1- 4x2 - 4x + 3x + 3 = 10
<=> 3x + 4 = 10
<=> 3x = 6
<=> x = 2
c) (x - 5)2 - (x + 7)2 = 20 - 3x
<=> (x - 5 - x - 7)( x - 5 +x + 7) = 20 - 3x
<=> -12(2x + 2) = 20 - 3x
<=> -24x - 24 = 20 - 3x
<=> -24x + 3x = 20 + 24
<=> -21x = 44
<=> x = \(-\frac{44}{21}\)
(2x_1)2+(x+3)2_5(x+7)(x_7)=0
=>4x2-4x+1+x2+6x+9-5x2+245=0
=>(4x2+x2-5x2)+(-4x+6x)+(9+245)=0
=>2x+255=0
=>2x=-255
=>x=-255/2
Ta cos : -(x + 3)(x - 4) + (x - 1)(x + 1) = 10
<=> -(x2 - x -12) + x2 + 1 = 10
<=> -x2 + x + 12 + x2 + 1 = 10
<=> x + 13 = 10
=> x = 10 - 13
=> x = -3
\(\left(x+3\right)^2-\left(x-7\right)\left(x-5\right)=10\)
\(\Rightarrow x^2+6x+9-x^2+12x-35=10\)
\(\Rightarrow18x=36\Rightarrow x=2\)