![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: (x-2)(x+3/4)>0
=>x-2>0 hoặc x+3/4<0
=>x>2 hoặc x<-3/4
b: (2x-5)(1-3x)>0
=>(2x-5)(3x-1)<0
=>3x-1>0 và 2x-5<0
=>1/3<x<5/2
c: (3-2x)(x+1)<0
=>(2x-3)(x+1)>0
=>2x-3>0 hoặc x+1<0
=>x>3/2 hoặc x<-1
d: (5x+11)(7-x)<0
=>(5x+11)(x-7)>0
=>x>7 hoặc x<-11/5
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\left(2-x\right)\left(x+3\right)>0\Leftrightarrow\left(x-2\right)\left(x+3\right)< 0\)
Vì \(x+3>x-2\)
nên \(\hept{\begin{cases}x+3>0\\x-2< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-3\\x< 2\end{cases}\Leftrightarrow-3< x< 2}\)
c, \(\left(5-2x\right)\left(x+4\right)>0\)
TH1 : \(\hept{\begin{cases}5-2x>0\\x+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{5}{2}\\x>-4\end{cases}}\Leftrightarrow-4< x< \frac{5}{2}\)
TH2 : \(\hept{\begin{cases}5-2x< 0\\x+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{5}{2}\\x< -4\end{cases}}\)( vô lí )
bạn làm tương tự nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
a) x2 + 5x = 0 <=> x(x + 5) = 0
=. X = 0 hoặc x = - 5
b) (x - 1).(x + 2) > 0
x - 1 > 0 hoặc x + 2 > 0
=> x > 1 hoặc x > - 2
c) (x - 1).(x + 2) < 0
x - 1 < 0 hoặc x + 2 < 0
=> x < 1 hoặc x < - 2
chọn x = 0
d) 3(2x + 3).(3x - 5) < 0
2x + 3 < 0 hoặc 3x - 5 < 0
=> x < -3/2 hoặc x < 5/3
chọn x <5/3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2x + 5 < 0 => 2x < - 5 => x < -2,5
b) -4 - 5x > 0 => -4 > 5x => -0,8 > x
c) -7x + 3 < 0 => -7x < -3 => x > 3/7
d) x - 7 > 0 => x > 7
e) -3 + 4x > 0 => 4x > 3 => x > 0,75
\(a,2x+5< 0\) \(b,-4-5x>0\)
\(\Rightarrow2x< -5\) \(\Rightarrow-4>5x\)
\(\Rightarrow x< -\frac{5}{2}\) \(\Rightarrow x< -\frac{4}{5}\)
\(c,-7x+3< 0\) \(d,x-7>0\)
\(\Rightarrow-7x< -3\) \(\Rightarrow x>7\)
\(\Rightarrow x>\frac{3}{7}\)
\(e,-3+4x>0\)
\(\Rightarrow4x>3\)
\(\Rightarrow x>\frac{3}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\left(x-3\right)\left(2x-1\right)>0.\)
\(Th1:x-3>0;2x-1>0\)
\(x-3>0\Rightarrow x>3_{\left(1\right)}\)
\(2x-1>0\Rightarrow2x>1\Rightarrow x>\frac{1}{2}_{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow x>3`\)
\(Th2:x-3< 0;2x-1< 0\)
\(x-3< 0\Rightarrow x< 3_{\left(1\right)}\)
\(2x-1< 0\Rightarrow2x< 1\Rightarrow x< \frac{1}{2}_{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow x< \frac{1}{2}\)
b) \(\left(2-3x\right)\left(-5x+1\right)< 0\)
\(Th1:2-3x>0;-5x+1< 0\)
\(2-3x>0\Rightarrow3x>2\Rightarrow x>\frac{2}{3}_{\left(1\right)}\)
\(-5x+1< 0\Rightarrow-5x< -1\Rightarrow x< \frac{1}{5}_{\left(2\right)}\)
\(_{\left(1\right),\left(2\right)\Rightarrow}\)không xảy ra trường hợp này
\(Th2:2-3x< 0;-5x+1>0\)
\(2-3x< 0\Rightarrow3x< 2\Rightarrow x< \frac{2}{3}_{\left(1\right)}\)
\(-5x+1>0\Rightarrow-5x>-1\Rightarrow x>\frac{1}{5}_{\left(2\right)}\)
\(\left(1\right),\left(2\right)\Rightarrow\frac{1}{5}< x< \frac{2}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-2\right)\left(x-3\right)< 0\\ \Rightarrow\left(x-2\right)\text{ và }\left(x-3\right)\text{khác dấu}\)
\(\left\{{}\begin{matrix}x-2>0\\x-3< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>2\\x< 3\end{matrix}\right.\Rightarrow2< x< 3\\ \left\{{}\begin{matrix}x-2< 0\\x-3>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 2\\x>3\end{matrix}\right.\left(loai\right)\)
Vậy ...
\(x\cdot x-2x>0\Rightarrow x\left(x-2\right)>0\Rightarrow x\text{ và }x-2\text{ cùng dấu}2\)
\(\left\{{}\begin{matrix}x>0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x>2\end{matrix}\right.\Rightarrow x>2\\ \left\{{}\begin{matrix}x< 0\\x-2< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 0\\x< 2\end{matrix}\right.\Rightarrow x< 2\)
Vậy ...
\(x\cdot x-5x< 0\Rightarrow x\left(x-5\right)< 0\Rightarrow x\text{ và }x-5\text{ khác dấu}\)
\(\left\{{}\begin{matrix}x>0\\x-5< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>0\\x< 5\end{matrix}\right.\Rightarrow0< x< 5\\ \left\{{}\begin{matrix}x< 0\\x-5>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 0\\x>5\end{matrix}\right.\left(loai\right)\)
Vậy ...