\(-|x-2|+2|x+1|-|x-3|=4x-1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2021

-|x - 2| + 2|x + 1| - |x - 3| = 4x - 1

<=> |x -2| - 2|x + 1| + |x - 3| = 1 - 4x  (1)

Với x < - 1

=> |x + 1| = -x - 1

|x - 2| = -x + 2

|x - 3| = -x + 3

=> (1) <=> -x + 2 - 2(-x - 1) - x + 3 = 1 - 4x 

<=> 7 = 1 - 4x

<=> 4x = -6

<=> x  = -1,5 (tm)

Khi -1 \(\le x\le2\)

=> |x - 2| = -x + 2 

|x + 1| = x + 1

|x - 3| = -x + 3

Khi đó (1) <=> -x + 2 - 2(x + 1) - x + 3 = 1 - 4x 

<=> -4x + 3 = 1 - 4x 

<=> 0x = -2 

<=> x \(\in\varnothing\)

Khi 2 < x \(\le3\)

=> |x - 2| = x - 2

|x + 1| = x + 1

|x - 3| = -x + 3

Khi đó (1) <=> x - 2 - 2(x + 1) - x + 3 = 1 - 4x 

<=> -2x - 1 = 1 - 4x 

<=> 2x = 2 

<=> x = 1 (loại) 

Nếu x > 3

=> |x - 2| = x -2

|x + 1| = x + 1

|x - 3| = x - 3

Khi đó (1) <=> x - 2 - 2(x + 1) + x - 3 = 1 - 4x

<=> -7 = 1  - 4x

<=> 4x = 8

<=> x = 2 (loại) 

Vậy x = -1,5 

- trị tuyệt đối(x -2) + 2 *trị tuyệt đối(x + 1) - trị tuyệt đối(x -3) = 4 *x -1

Tập xác định của phương trình

  1. Biến đổi vế trái của phương trình

  2. Phương trình thu được sau khi biến đổi

  3. Lời giải thu được

x=-3/2

3 tháng 7 2019

a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)

=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)

=> \(\left|2-\frac{3}{2}x\right|=x+6\)

ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)

Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)

=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)

=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)

=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)

b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)

=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)

=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)

=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)

=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)

=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)

=> x = 1/4

hoặc x = 0 hoặc x = 1/2

6 tháng 10 2017

a) \(\frac{2}{3}=\frac{-10}{x}\)

\(\Rightarrow2x=-30\)

\(\Rightarrow x=-15\)

6 tháng 10 2017

b) -2|x - 1| = \(\frac{-3}{4}\)

\(\Rightarrow\)|x - 1| = \(\frac{3}{8}\)

\(\Rightarrow\)x - 1 = \(\frac{3}{8}\)hoặc\(\frac{-3}{8}\)

\(\Rightarrow\)x = \(1\frac{3}{8}\)hoặc\(1\frac{-3}{8}\)

5 tháng 4 2020

1. \(A=x^{15}+3x^{14}+5=x^{14}\left(x+3\right)+5\)

Thay \(x+3=0\)vào đa thức ta được:\(A=x^{14}.0+5=5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

Thay \(x=-3\)vào đa thức ta được: \(B=\left[x^{2006}\left(-3+3\right)+1\right]^{2017}=\left(x^{2006}.0+1\right)^{2017}=1^{2017}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15=3x\left(7x^3+4x^2-x+8\right)+15\)

Thay \(7x^3+4x^2-x+8=0\)vào đa thức ta được: \(C=3x.0+15=15\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32x+2007\)

\(=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

Thay \(-4x^4-7x^3+4x^2-5x+8=0\)vào đa thức ta được: \(D=4x.0+2007=2007\)

1. \(A=x^{15}+3x^{14}+5\)

\(A=x^{14}\left(x+3\right)+5\)

\(A=x^{14}+5\)

2. \(B=\left(x^{2007}+3x^{2006}+1\right)^{2007}\)

\(B=\left[x^{2006}\left(x+3\right)+1\right]^{2007}\)

\(B=\left[x^{2006}.\left(-3+3\right)+1\right]^{2007}\)

\(B=1^{2007}=1\)

3. \(C=21x^4+12x^3-3x^2+24x+15\)

\(C=3x\left(7x^2+4x^2-x+8+5\right)\)

\(C=3x\left(0+5\right)\)

\(C=15x\)

4. \(D=-16x^5-28x^4+16x^3-20x^2+32+2007\)

\(D=4x\left(-4x^4-7x^3+4x^2-5x+8\right)+2007\)

\(D=4x.0+2007\)

\(D=2007\)

17 tháng 3 2019

Thứ nhất : là bài 3 bạn ghi đề bị thiếu . 

Thứ hai : là mình đã tốn thời gian giải cho bạn rồi nên đừng tiếc thời gian để k cho mình nếu mình đúng

Thứ 3 : mong các thành phần chuyên sao chép lời giải người khác và đăng lên , thậm chí là giống như đúc đừng sao chép bài của mình nhé .

Giải : 

1, Ta có : \(y\sqrt{x}-3y=\sqrt{x}+1\Rightarrow y\left(\sqrt{x}-3\right)=\sqrt{x}+1\)

\(\Rightarrow y\left(\sqrt{x}-3\right)-\left(\sqrt{x}+1\right)=0\Rightarrow y\left(\sqrt{x}-3\right)-\sqrt{x}-1=0\)

\(y\left(\sqrt{x-3}\right)-\sqrt{x}+3-4=0\Rightarrow y\left(\sqrt{x-3}\right)-\left(\sqrt{x-3}\right)-4=0\)

\(\left(\sqrt{x}-3\right)\left(y-1\right)-4=0\)

\(\left(\sqrt{x}-3\right)\left(y-1\right)=4\)

Vì y thuộc Z nên y-1 thuộc Z => \(\left(\sqrt{x}-3\right)\in Z\)

Ta có bảng : 

\(\sqrt{x}-3\)\(1\)\(4\)\(-1\)\(-4\)\(2\)\(-2\)
\(y-1\)\(4\)\(1\)\(-4\)\(-1\)\(2\)\(-2\)
\(x\)\(2\)\(\varnothing\)\(\varnothing\)\(\varnothing\)\(\varnothing\)\(1\)

\(y\)

\(5\)\(\varnothing\)\(\varnothing\)\(\varnothing\)\(\varnothing\)\(-1\)

Vậy các cặp x,y thỏa mãn là (2;5) và (1;-1)

2,Ta có \(y\sqrt{x}-\sqrt{x}=1-y\Rightarrow\sqrt{x}\left(y-1\right)+y-1=0\Rightarrow\left(y-1\right)\left(\sqrt{x}+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}y-1=0\\\sqrt{x}+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=1\\x\in\varnothing\end{cases}}}\)

Vậy \(y=1,x\in\varnothing\)

17 tháng 3 2019

Không hẳn là cách khác nhưng cứ xem cho vui=)

1/\(y\left(\sqrt{x}-3\right)=\sqrt{x}+1\Leftrightarrow y=1+\frac{4}{\sqrt{x}-3}\)

Để y nguyên thì \(\sqrt{x}-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Bài toán trở về dạng quen thuộc.

2/ \(\sqrt{x}\left(y-1\right)=1-y\)

Với y = 1 thì \(\sqrt{x}.0=0\) (luôn đúng)

Với y khác 1:

\(\sqrt{x}\left(y-1\right)=1-y\Rightarrow\sqrt{x}=\frac{1-y}{y-1}=\frac{-1\left(y-1\right)}{y-1}=-1\)(vô lí vì \(\sqrt{x}\ge0\))

Vậy x tùy ý; y = 1

3/ Thiếu đề.

6 tháng 9 2020

Dài đấy :))

a) \(\left|x-1\right|-\left(-2\right)^3=9\cdot\left(-1\right)^{100}\)

\(\Leftrightarrow\left|x-1\right|-\left(-8\right)=9\cdot1\)

\(\Leftrightarrow\left|x-1\right|+8=9\)

\(\Leftrightarrow\left|x-1\right|=1\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}\)

b) \(\frac{x-2}{-4}=\frac{-9}{x-2}\)( ĐKXĐ : \(x\ne2\))

\(\Leftrightarrow\left(x-2\right)\left(x-2\right)=-4\cdot\left(-9\right)\)

\(\Leftrightarrow\left(x-2\right)^2=36\)

\(\Leftrightarrow\left(x-2\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=6\\x-2=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-4\end{cases}}\left(tmđk\right)\)

c) \(\frac{x-5}{3}=\frac{-12}{5-x}\)( ĐKXĐ : \(x\ne5\))

\(\Leftrightarrow\frac{x-5}{3}=\frac{-12}{-\left(x-5\right)}\)

\(\Leftrightarrow\frac{x-5}{3}=\frac{12}{x-5}\)

\(\Leftrightarrow\left(x-5\right)\left(x-5\right)=3\cdot12\)

\(\Leftrightarrow\left(x-5\right)^2=36\)

\(\Leftrightarrow\left(x-5\right)^2=\left(\pm6\right)^2\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=6\\x-5=-6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=11\\x=-1\end{cases}}\left(tmđk\right)\)

d) \(8x-\left|4x+\frac{3}{4}\right|=x+2\)

\(\Leftrightarrow8x-x-2=\left|4x+\frac{3}{4}\right|\)

\(\Leftrightarrow7x-2=\left|4x+\frac{3}{4}\right|\)(*)

\(\left|4x+\frac{3}{4}\right|\ge0\Leftrightarrow4x+\frac{3}{4}\ge0\Leftrightarrow x\ge-\frac{3}{16}\)

Vậy ta xét hai trường hợp sau :

1. \(x\ge-\frac{3}{16}\)

(*) <=>\(7x-2=4x+\frac{3}{4}\)

\(\Leftrightarrow7x-4x=\frac{3}{4}+2\)

\(\Leftrightarrow3x=\frac{11}{4}\)

\(\Leftrightarrow x=\frac{11}{12}\)(tmđk)

2. \(x< -\frac{3}{16}\)

(*) <=> \(7x-2=-\left(4x+\frac{3}{4}\right)\)

\(\Leftrightarrow7x-2=-4x-\frac{3}{4}\)

\(\Leftrightarrow7x+4x=-\frac{3}{4}+2\)

\(\Leftrightarrow11x=\frac{5}{4}\)

\(\Leftrightarrow x=\frac{5}{44}\left(ktmđk\right)\)

Vậy x = 11/12

e) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2019}{2020}\)

\(\Leftrightarrow2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2019}{2020}\)

\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2019}{4040}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{4040}\)

\(\Leftrightarrow x+1=4040\)

\(\Leftrightarrow x=4039\)

8 tháng 9 2020

ĐKXD là gì vậy

26 tháng 9 2017

a) \(\left|2x-3\right|-\dfrac{5}{2}=\dfrac{1}{3}\)

\(\left|2x-3\right|=\dfrac{1}{3}+\dfrac{5}{2}=\dfrac{2}{6}+\dfrac{15}{6}\)

\(\left|2x-3\right|=\dfrac{17}{6}\)

\(+)2x-3=\dfrac{17}{6}\Rightarrow2x=\dfrac{35}{6}\Rightarrow x=\dfrac{35}{12}\)

\(+)2x-3=\dfrac{-17}{6}\Rightarrow2x=\dfrac{1}{6}\Rightarrow x=\dfrac{1}{12}\)

vậy...

26 tháng 9 2017

\(\left|x-1\right|+3x=1\\ \Rightarrow\left|x-1\right|=1-3x\\ \Rightarrow\left\{{}\begin{matrix}x-1=1-3x\\x-1=-1+3x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}4x=2\\-2x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=0\end{matrix}\right.\)

Dấu ngoặc vuông nhé

thánh bấm nhầm

29 tháng 9 2020

a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{11};\frac{3}{5}\right\}\)

29 tháng 9 2020

b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)

\(\Leftrightarrow\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{15}{8}x=\frac{29}{10}\\\frac{5}{8}x=\frac{41}{10}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{116}{75}\\x=\frac{164}{25}\end{cases}}\)