Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
hay ND=AB và ND//AB
Xét tứ giác ANMB có NM//AB
nên ANMB là hình thang
mà \(\widehat{NAB}=90^0\)
nên ANMB là hình thang vuông
b: Xét tứ giác ABDN có
DN//AB
DN=AB
Do đó: ABDN là hình bình hành
mà \(\widehat{NAB}=90^0\)
nên ABDN là hình chữ nhật
\(a,\) Vì M là trung điểm ND và BC nên BDCN là hình bình hành
\(b,\) Vì BDCN là hình bình hành nên \(BD\text{//}NC\) hay \(BD\text{//}NA\) và \(BD=NC=NA\) (N là trung điểm AC)
Do đó ABDN là hình bình hành
Mà \(\widehat{BAC}\equiv\widehat{NAB}=90^0\) nên ABDN là hình chữ nhật
\(c,\) Kẻ đường cao AH
\(\Rightarrow\left\{{}\begin{matrix}S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH.2BM=AH.BM\\S_{ABM}=\dfrac{1}{2}AH.BM\end{matrix}\right.\\ \Rightarrow\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{AH.BM}{2AH.BM}=\dfrac{1}{2}\\ \Rightarrow S_{ABC}=2S_{ABM}\)
a: Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//AB
Xét tứ giác ANMB có MN//AB
nên ANMB là hình thang
mà \(\widehat{NAB}=90^0\)
nên ANMB là hình thang vuông
b: Xét tứ giác AMCD có
N là trung điểm của AC
N là trung điểm của MD
Do đó; AMCD là hình bình hành
mà MA=MC
nên AMCD là hình thoi
a: Xét ΔABC có
D là trung điểm của BC
E là trung điểm của AC
Do đó: DE là đường trung bình của ΔABC
Suy ra: DE//AB
Xét tứ giác ABDE có DE//AB
nên ABDE là hình thang
mà \(\widehat{EAB}=90^0\)
nên ABDE là hình thang vuông
a: Xét ΔCAB có CN/CA=CM/CB
nên MN//AB và MN=AB/2
Xét tứ giác ADMN có
MN//AD
MD//AN
góc DAN=90 độ
Do đó: ADMN là hình chữ nhật
b: Xét tứ giác AMCK có
N là trung điểm chung của AC và MK
MA=MC
Do đó: AMCK là hình thoi
Em tham khảo tại đây nhé.
Câu hỏi của nguuen thi minh tam - Toán lớp 8 - Học toán với OnlineMath
Để chứng minh các phần a, b và c, ta sẽ sử dụng các tính chất của tam giác vuông và hình chữ nhật.
a. Ta có tam giác ABC vuông tại A, nên theo định lí trung tuyến, ta có DE là đường trung tuyến của tam giác ABC. Do đó, DE song song với cạnh AC. Tương tự, ta có DF song song với cạnh AB. Vậy DE//AC và DF//AB.
b. Ta cần chứng minh AEDF là hình chữ nhật. Đầu tiên, ta thấy DE//AC và DF//AB (theo phần a). Khi đó, ta có:
- AD = DC (vì D là trung điểm của BC)
- AE = EB (vì E là trung điểm của AB)
- AF = FC (vì F là trung điểm của AC)
Vậy ta có các cạnh đối diện của tứ giác AEDF bằng nhau, do đó AEDF là hình chữ nhật.
c. Gọi M là điểm đối xứng của D qua AB. Ta cần chứng minh M đối xứng với N qua A. Để làm điều này, ta sẽ chứng minh AM = AN và góc MAN = góc NAM.
- Vì M là điểm đối xứng của D qua AB, nên ta có AM = AD.
- Vì N là điểm đối xứng của D qua AC, nên ta có AN = AD.
Do đó, ta có AM = AN.
- Ta có góc MAD = góc DAB (vì M là điểm đối xứng của D qua AB)
- Ta có góc NAD = góc DAC (vì N là điểm đối xứng của D qua AC)
Vì tam giác ABC vuông tại A, nên góc DAB = góc DAC. Từ đó, ta có góc MAD = góc NAD.
Vậy ta có AM = AN và góc MAN = góc NAM, do đó M đối xứng với N qua A.
Vậy ta đã chứng minh được M đối xứng với N qua A.
\(\left(x+2\right)^2+x\left(7-x\right)=15\\ \Leftrightarrow x^2+4x+4+7x-x^2=15\\ \Leftrightarrow11x=11\\ \Leftrightarrow x=1\)
Bài 2:
a: Xét ΔABC có
M là trung điểm của BC
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AB
Xét tứ giác ANMB có MN//AB
nên ANMB là hình thang
mà \(\widehat{NAB}=90^0\)
nên ANMB là hình thang vuông