K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

\(\text{| x - 22 | + | x - 3 | + | x - 2017 | = 2014}\)

\(\Leftrightarrow\text{| x - 22 | + | x - 2017 | + | 3 - x | = 2014 }\)

Ta có : \(\left|3-x\right|+\left|x-2017\right|\ge\left|3-x+x-2017\right|=2014\) \(\forall x\in R\)

\(\left|x-22\right|\ge0\)\(\) \(\forall x\in R\)

Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(3-x\right)\left(x-2017\right)\ge0\\x-22=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\le x\le2017\\x=22\end{matrix}\right.\)

Vậy \(x=22\)

4 tháng 4 2017

tks p Trung Bảo

2 tháng 9 2019

=> (x+2020)/5=(x+2020)/6=(x+2020)/3+(x+2020)/2

=>(x+2020)(1/5+1/6)=(x+2020)(1/3+1/2)

Với x+2020=0=>x=-2020

Với x+2020 khác 0=>1/5+1/6=1/3+1/2 ,vô lí 

Vậy x=-2020

5 tháng 3 2023

\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)

\(\dfrac{x+4}{2014}+1+\dfrac{x+3}{2015}+1=\dfrac{x+2}{2016}+1+\dfrac{x+1}{2017}+1\)

\(\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)

\(\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\\ x+2018=0\\ x=-2018\)

 

21 tháng 6 2017

\(\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)

\(\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}+\frac{x+2018}{2017}=0\)

\(x+2018.\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}+\frac{1}{2017}\right)=0\)

\(\Rightarrow x+2018=0\)

\(\Rightarrow x=-2018\)

21 tháng 6 2017

\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+2}{2016}+\)\(\frac{x+1}{2017}\)

\(\Rightarrow\left(\frac{x+4}{2014}+1\right)+\left(\frac{x+3}{2015}+1\right)=\left(\frac{x+2}{2016}+1\right)+\left(\frac{x+1}{2017}+1\right)\)

\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2016}+\frac{x+2018}{2017}\)

\(\Rightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}-\frac{x+2018}{2017}=0\)

\(\Rightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)=0\)

\(M\text{à:}\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\ne0\)

\(\Rightarrow x+2018=0\Rightarrow x=-2018\)

24 tháng 4 2017
Đặt g(x)=f(x)-x-1 vì f(x) bậc 3 nên g(x) cũng bậc ba. Ta có g(2015)=g(2016)=0 Nên g(x)=(x-2015)(x-2016)(ax+b) suy ra f(x)=(x-2015)(x-2016)+x+1. Từ điều kiện f(2014)-f(2017)=3 suy ra a=-1, b tùy ý
11 tháng 9 2016

\(\frac{x+4}{2014}+\frac{x+3}{2015}=\frac{x+2}{2016}+\frac{x+1}{2017}\) 

\(\Leftrightarrow\frac{x+4}{2014}+1+\frac{x+3}{2015}+1=\frac{x+2}{2016}+1+\frac{x+1}{2017}+1\)

\(\Leftrightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}=\frac{x+2018}{2016}+\frac{x+2018}{2017}\) 

\(\Leftrightarrow\frac{x+2018}{2014}+\frac{x+2018}{2015}-\frac{x+2018}{2016}-\frac{x+2018}{2017}=0\) 

\(\Leftrightarrow\left(x+2018\right)\left(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\right)=0\)  

Vì: \(\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2016}-\frac{1}{2017}\ne0\) 

\(\Rightarrow x+2018=0\Rightarrow x=-2018\)

24 tháng 1 2017

f)

\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)

x-3={-4)=> x=-1

19 tháng 9 2016

\(\frac{x+2015}{2016}+\frac{x+2016}{2015}+\frac{x+2017}{2014}=-3\)

\(\Leftrightarrow\frac{x+2015}{2016}+1+\frac{x+2016}{2015}+1+\frac{x+2017}{2014}+1=0\)

\(\Leftrightarrow\frac{x+4031}{2016}+\frac{x+4031}{2015}+\frac{x+4031}{2014}=0\)

\(\Leftrightarrow\left(x+4031\right)\left(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\right)=0\)

Có: \(\frac{1}{2016}+\frac{1}{2015}+\frac{1}{2014}\ne0\)

\(\Rightarrow x+4031=0\)

\(\Rightarrow x=-4031\)

15 tháng 9 2017

\(x+\frac{5}{2015}+x+\frac{6}{2014}+x+\frac{3}{2017}=-3\)

\(\Rightarrow3x+\left(\frac{1}{403}+\frac{3}{1007}+\frac{3}{2017}\right)=-3\)

\(\Rightarrow\frac{1}{403}+\frac{3}{1007}+\frac{3}{2017}=-3-3x=-3.\left(1-x\right)\)

\(\Rightarrow\frac{\frac{1}{403}+\frac{3}{1007}+\frac{3}{2017}}{-3}-1=-x\)

15 tháng 9 2017

Cảm ơn nha