Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left|x-2011\right|=x-2012\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2011=x-2012\\x-2011=-x+2012\end{matrix}\right.\)
\(\)\(\Leftrightarrow\left[{}\begin{matrix}x-x=-2012+2011\\x+x=2012+2011\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}0x=-1\left(loại\right)\\2x=4023\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{4023}{2}\)
Vậy ...
a) \(\frac{x+4}{2009}+1+\frac{x+3}{2010}+1=\frac{x+2}{2011}+1+\frac{x+1}{2012}\)
\(\frac{x+4+2009}{2009}+\frac{x+3+2010}{2010}=\frac{x+2+2011}{2011}+\frac{x+2+2012}{2012}\)
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}-\frac{x+2013}{2011}-\frac{x+2013}{2012}=0\)
\(\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)=0\) (1)
Vì \(\left(\frac{1}{2009}+\frac{1}{2010}-\frac{1}{2011}-\frac{1}{2012}\right)\ne0\)
Nên biểu thức (1) xảy ra khi \(x+2013=0\)
\(x=-2013\)
b) \(\left(x-2011\right)\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)=0\) (2)
Vì \(\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}-\frac{1}{2013}-\frac{1}{2014}\right)\ne0\)
Nên biểu thức (2) xảy ra khi \(x-2011=0\)
\(x=2011\)
a, Đ/k x-2012>=0 suy ra x>=2012
|x-2011|=\(\orbr{\begin{cases}x-2012\\2012-x\end{cases}}\)
TH1:x-2011=x-2012
suy ra 0=4023(loại vì mất x)
TH2: x-2011=2012-x
suy ra 2x=4023
suy ra x=2011,5
Vậy..........
\(\frac{x-3}{2013}+\frac{x-4}{2012}=\frac{x-5}{2011}+\frac{x-6}{2010}\)
\(\Leftrightarrow\frac{x-3-2013}{2013}+\frac{x-2-2012}{2012}=\frac{x-5-2011}{2011}+\frac{x-6-2010}{2010}\)(mỗi vế trừ đi 2)
\(\Leftrightarrow\frac{x-2016}{2013}+\frac{x-2016}{2012}-\frac{x-2016}{2011}-\frac{x-2016}{2010}=0\)
\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\right)=0\)
Mà \(\frac{1}{2013}+\frac{1}{2012}-\frac{1}{2011}-\frac{1}{2010}\ne0\)
\(\Rightarrow x-2016=0\Leftrightarrow x=2016\)
Cộng mỗi vế cho 1
Ta có: \(\frac{x-3-2013}{2013}+\frac{x-4-2012}{2012}=\frac{x-5-2011}{2011}+\frac{x-6-2010}{2010}\)
\(=>\left(\frac{x-2016}{2013}+\frac{x-2016}{2012}\right)-\left(\frac{x-2016}{2011}+\frac{x-2016}{2010}\right)=0\)
\(=>\left(x-2016\right).\left(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)\)
Mà \(\frac{1}{2013}+\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\ne0\)
\(=>x-2016=0\\ =>x=2016\)
+ Nếu x< 2010
=> 2011 -x + 2010 -x =2012 => 2x = 2009 => x =2009/2 thỏa mãn
+ 2010 </ x < 2011
=> 2011 -x + x -2010 =2012 => 1 =2012 loại
+ x>/ 2011
=> x-2011 + x-2010 =2012 => 2x = 6033 => x = 6033/2 tỏa mãn
Vậy x =2009/2
hoặc x = 6033/2
a: \(\Leftrightarrow\left\{{}\begin{matrix}x>=2012\\\left(x-2012-x+2011\right)\left(x-2012+x-2011\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>=2012\\2x=2023\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
b: Trường hợp 1: x<2010
Pt sẽ là 2010-x+2011-x=2012
=>4021-2x=2012
=>2x=2009
hay x=2009/2(nhận)
TRường hợp 2: 2010<=x<2011
=>x-2010+2011-x=2012
=>1=2012(vô lý)
Trường hợp 3: x>=2011
=>x-2010+x-2011=2012
=>2x=2012+4021=6033
hay x=6033/2(nhận)
Bài giải
BẠN LẬT SBT TOÁN 7 (TẬP1) TRANG 53 BÀI 8.6 NGƯỜI TA ĐÃ CHỨNG MINH ĐƯỢC x:y:z=a:b:c
=> x =a*m;y=b*m;z=c*m
=>p=(a*m)^2010+(b*m)^2010+(c*m)^2010=m^2010(a^2010+b^2010+c^2010)=m^2010*2013
BÀI NÀY HỘI NGỘ
THANK YOU SO MUCH
Ta có: \(\left|x-2010\right|+\left|x-2011\right|=2012\)
Nếu \(x\le2010\Rightarrow2010-x+2011-x=2012\Rightarrow x=\frac{2009}{2}\) (thỏa mãn)
Nếu \(2010< x< 2011\Rightarrow x-2010+2011-x=2012\Rightarrow1=2012\) (không thỏa mãn)
Nếu \(x\ge2011\Rightarrow x-2010+x-2011=2012\Rightarrow x=\frac{6033}{2}\) (thỏa mãn)
Vậy \(x=\left\{\frac{2009}{2};\frac{6033}{2}\right\}\)
/x-2010/+/x-2011/=2012 (1)
Nếu x \(\le\) 2010 từ (1) suy ra : 2010 - x + 2011 - x = 2012 => x = 2009/2 (TM)
Nếu 2010 < x < 2011 từ (1) suy ra : x - 2010 + 2011 - x = 2012 => 1 = 2012 (loại)
Nếu x \(\ge\) 2011 từ (1) suy ra : x - 2010 + x - 2011 = 2012 => x = 6033/2 (TM)
Vậy...