K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2023

a)

`4(x-2)^2 =4`

`<=>(x-2)^2 =1`

`<=>x-2=1` hoặc `x-2=-1`

`<=>x=3` hoặc `x=1`

b)

`5(x^2 -6x+9)=5`

`<=>(x-3)^2 =1`

`<=>x-3=1`hoặc `x-3=-1`

`<=>x=4` hoặc `x=2`

c)

`4x^2 +4x+1=0`

`<=>(2x+1)^2 =0`

`<=>2x+1=0`

`<=>x=-1/2`

d)

`9x^2 +6x+1=2`

`<=>(3x+1)^2 =2`

\(< =>\left[{}\begin{matrix}3x+1=\sqrt{2}\\3x+1=-\sqrt{2}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{\sqrt{2}-1}{3}\\x=\dfrac{-\sqrt{2}-1}{3}\end{matrix}\right.\)

21 tháng 6 2023

câu (a), (b) thiếu trường hợp

x - 2 = -1 

và x - 3 = -1

10 tháng 10 2017

Ta có

x 2 + 6 x + 9 = 3 x - 1 ⇔ x + 3 2 = 3 x - 1

⇔ |x + 3| = 3x - 1 (2)

* Trường hợp 1: x + 3  ≥  0 ⇔ x ≥ -3 ⇒ |x + 3| = x + 3

Suy ra: x + 3 = 3x - 1 ⇔ x - 3x = -1 - 3 ⇔ -2x = -4 ⇔ x = 2

Giá trị x = 2 thỏa mãn điều kiện x  ≥  -3.

Vậy x = 2 là nghiệm của phương trình (2).

* Trường hợp 2: x + 3 < 0 ⇔ x < -3 ⇒ |x + 3| = -x - 3

Suy ra: -x - 3 = 3x - 1 ⇔ -x - 3x = -1 + 3 ⇔ -4x = 2 ⇔ x = -0.5

Giá trị x = -0,5 không thỏa mãn điều kiện x < -3: loại

Vậy x = 2

10 tháng 7 2021

√(x2-6x+11) + √(x2-6x+13) + √(x2-4x+5) = 3+√2 (1)

Có: \(\sqrt{x^2-6x+11}=\sqrt{\left(x-3\right)^2+2}\ge\sqrt{2}\)

(Dấu = xảy ra khi x = 3)

\(\sqrt{x^2-6x+13}=\sqrt{\left(x-3\right)^2+4}\ge\sqrt{4}=2\)

(Dấu = xảy ra khi x = 3)

\(\sqrt{x^2-4x+5}=\sqrt{\left(x-2\right)^2+1}\ge1\)

(Dấu = xảy ra khi x = 2)

Nhận xét PT (1):

\(VT\ge3+\sqrt{2}\)

\(VP=3+\sqrt{2}\)

Nên: √(x2-6x+11) + √(x2-6x+13) + √(x2-4x+5) = 3+√2 khi: x = 3 và x = 2

=> PT vô nghiệm

 

Bài 1: 

a: Ta có: \(\sqrt{3x^2}=\sqrt{12}\)

\(\Leftrightarrow3x^2=12\)

\(\Leftrightarrow x^2=4\)

hay \(x\in\left\{2;-2\right\}\)

b: Ta có: \(\sqrt{\left(x-2\right)^2}=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=3\\x-2=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

11 tháng 7 2023

1, \(\sqrt{4-4x+x^2}=3\)

\(\Leftrightarrow\sqrt{\left(2+x\right)^2}=3\)

\(\Leftrightarrow\left|2+x\right|=3\)

TH1: \(\left|2-x\right|=2-x\) với \(2-x\ge0\Leftrightarrow x\le2\)

Pt trở thành:

\(2-x=3\) (ĐK: \(x\le2\) )

\(\Leftrightarrow x=2-3\)

\(\Leftrightarrow x=-1\left(tm\right)\)

TH2: \(\left|2-x\right|=-\left(2-x\right)\) với \(2-x< 0\Leftrightarrow x>2\)

Pt trở thành:

\(-\left(2-x\right)=3\) (ĐK: \(x>2\))

\(\Leftrightarrow-2+x=3\)

\(\Leftrightarrow x=3+2\)

\(\Leftrightarrow x=5\left(tm\right)\)

Vậy \(S=\left\{-1;5\right\}\)

11 tháng 7 2023

Bài 1 sai dấu em ơi

8 tháng 1 2018

22 tháng 11 2020

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN