Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm sao tìm đc:
|3x + 9 - 17| > 0
nên |3x + 9 - 17| ko thể bằng -50
=> x thuộc rỗng
1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)
Vậy ....
2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)
vậy ...
3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
Vậy ...
c) l x - 5 l = 2x
\(\Leftrightarrow\orbr{\begin{cases}x-5=2x\\x-5=-2x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-2x=5\\x+2x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=5\\3x=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{5}{3}\end{cases}}\)
Hok tốt!!!!!!!
Tìm x, biết:
a) |2x + 1| = 17
<=>\(\orbr{\begin{cases}2x+1=17\\2x+1=-17\end{cases}}\)
<=>\(\orbr{\begin{cases}2x=16\\2x=-18\end{cases}}\)
<=> \(\hept{\begin{cases}x=8\\x=-9\end{cases}}\)
a) \(xy=z;yz=4x;xz=9y\Rightarrow xy.yz.xz=z.4x.9y\Rightarrow\left(xyz\right)^2=36xyz\Rightarrow xyz=36\)
Đấy rồi bạn tự thay giá trị vào tìm ra x;y;z
b) Bài này chắc là rút gọn
\(\frac{2x+9}{x+3}+\frac{5x+17}{x+3}-\frac{3x}{x+3}=\frac{2x+9+5x+17-3x}{x+3}=\frac{4x+26}{x+3}=4+\frac{14}{x+3}\)
Có:LCM(3,5,7)= 105
=>\(\frac{3x-5y}{2}\)=\(\frac{7y-3z}{3}\)=\(\frac{5z-7x}{4}\)sẽ bằng \(\frac{21\left(3x-5y\right)}{2.21}\)=\(\frac{15\left(7y-3z\right)}{3.15}\)=\(\frac{9\left(5z-7x\right)}{4.9}\)
Và bằng \(\frac{63x-105y}{42}\)=\(\frac{105y-45z}{45}\)=\(\frac{45z-63x}{36}\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{63x-105y+105y-45z+45z-63x}{45+42+36}\)=0
=>3x-5y=0 ;7y-3z=0 ;5z-7x=0
Xét 3x-5y=0 và 7y-3z=0
Có: 3x=5y :7y=3z
=>\(\frac{x}{5}\)=\(\frac{y}{3}\);\(\frac{y}{3}\)=\(\frac{z}{7}\)
=>\(\frac{x}{5}\)=\(\frac{y}{3}\)=\(\frac{z}{7}\)
Áp dung dãy tỉ số bằng nhau ta có:
\(\frac{x+y+z}{5+3+7}\)=\(\frac{17}{15}\)
Do đó: \(\frac{x}{5}\)=\(\frac{17}{15}\)=>x=\(\frac{17}{3}\)
\(\frac{y}{3}\)=\(\frac{17}{15}\)=>y=\(\frac{17}{5}\)
\(\frac{z}{7}\)=\(\frac{17}{15}\)=>z=\(\frac{119}{15}\)
2.Thấy $15;117y$ chia hết cho 3
\Rightarrow $38x$ chia hết cho 3
\Rightarrow $x$ chia hết cho 3
Đặt $x=3a$ (a thuộc Z)
\Rightarrow PT trở thành: $38a+39y=5$
\Leftrightarrow $y=\dfrac{5-38a}{39}=\dfrac{a+5}{39}-a$
Đặt $ dfrac{a+5}{39} = b$ (b thuộc Z)
\Rightarrow $a=39b-5$
\Rightarrow $y=b- (39b-5)=5-38b$
$x=3 (39b-5)=...$
Với b nguyên
Nghiệm tổng quát: $(x;y)=(...;.....)$ với b nguyên
(x−3)(x2+3x+9)−(3x−17)=x3−12(x−3)(x2+3x+9)−(3x−17)=x3−12
⇒x(x2+3x+9)−3(x2+3x+9)−3x+17=x3−12⇒x(x2+3x+9)−3(x2+3x+9)−3x+17=x3−12
⇒x3+3x2+9x−3x2−9x−27−3x+17=x3−12⇒x3+3x2+9x−3x2−9x−27−3x+17=x3−12
⇒x3+(3x2−3x2)+(9x−9x)−3x−10=x3+12⇒x3+(3x2−3x2)+(9x−9x)−3x−10=x3+12
⇒x3−3x−10=x3+12⇒x3−3x−10=x3+12
⇒x3−3x−10−12=x3⇒x3−3x−10−12=x3
⇒x3−3x−22=x3⇒x3−3x−22=x3
⇒3x−22=0⇒3x−22=0
⇒3x=22⇒x=223
(x−3)(x^2+3x+9)−(3x−17)=x^3−12
⇔x^3−27−3x+17=x^3−12
⇔−10−3x=−12
⇔3x=2
⇔x=2/3
Vậy...
\(\left|x+\frac{3}{4}\right|-\frac{1}{3}=0\)
\(\left|x+\frac{3}{4}\right|=\frac{1}{3}\)
\(\Rightarrow x+\frac{3}{4}=\pm\frac{1}{3}\)
\(\cdot x+\frac{3}{4}=\frac{1}{3}\)
\(x=-\frac{5}{12}\)
\(\cdot x+\frac{3}{4}=-\frac{1}{3}\)
\(x=-\frac{13}{12}\)
<=> x - 3x + 17 = 9
<=> - 2x + 17 = 9
<=> - 2x = 9 - 17
<=> - 2x = - 8
=> x = - 8 : ( - 2 )
=> x = 4
Vậy x = 4
x+17-3x=9
-2x=9-17
-2x=-8
x=-8:(-2)
x=4