Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\frac{x-1}{2000}-1+\frac{x-2}{1999}-1+\frac{x-3}{1998}-1+....+\frac{x-1999}{2}-1=0\)
\(\Leftrightarrow\frac{x-2001}{2000}+\frac{x-2001}{1999}+\frac{x-2001}{1998}+....+\frac{x-2001}{2}=0\)
\(\Leftrightarrow\left(x-2001\right)\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+...+\frac{1}{2}\right)=0\)
\(\Leftrightarrow x-2001=0\)
\(\Leftrightarrow x=2001\)
a)8x2+30x+7=0
=>8x2+28x+2x+7=0
=>(8x2+2x)+(28x+7)=0
=>2x(4x+1)+7(4x+1)=0
=>(2x+7)(4x+1)=0
\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=-\frac{1}{4}\end{cases}}\)
b)(x2-4x)2-8(x2-4x)+15=0
=>x4-8x3+8x2+32x+15=0
=>(x-5)(x+1)(x2-4x-3)=0
\(\Rightarrow\hept{\begin{cases}x=5\\x=-1\\x=2-\sqrt{7};x=\sqrt{7}+2\end{cases}}\)
Tìm x biết
1. 2(5x-8)-3(4x-5)=4(3x-4)+11
2. (2x+1)2-(4x-1).(x-3)-15=0
3. (3x-1).(2x-7)-(1-3x).(6x-5)=0
1) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)
\(\Rightarrow17x=17\Rightarrow x=1\)
3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)
\(\Leftrightarrow17x=17\)
hay x=1
Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0
=> 6x2 - 21x - (6x2 + x - 90x - 15) - 2010 = 0
=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0
=> 68x - 1995 = 0
?
b) 2x(x - 2012) - x + 2012 = 0
=> 2x(x - 2012) - (x - 2012) = 0
=> (x - 2012) (2x - 1) = 0
⇔[
x−2012=0 |
2x−1=0 |
⇔[
x=2012 |
2x=1 |
⇔[
x=2012 |
x=12 |
Vậy x = {2012;12 }
Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0
=> 6x2 - 21x - (6x2 + x - 90x - 15) - 2010 = 0
=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0
=> 68x - 1995 = 0
?
b) 2x(x - 2012) - x + 2012 = 0
=> 2x(x - 2012) - (x - 2012) = 0
=> (x - 2012) (2x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2012=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2012\\2x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2012\\x=\frac{1}{2}\end{cases}}\)
Vậy x = \(\left\{2012;\frac{1}{2}\right\}\)
\(a,\left|15+x\right|+x=-15\)
\(\Rightarrow\left|15+x\right|=-15-x\)
\(\Rightarrow\left|15+x\right|=-\left(15+x\right)\)
Vì \(\left|15+x\right|\ge0\forall x;-\left(15+x\right)\le0\forall x\)
\(\Rightarrow15+x=-15-x=0\Rightarrow x=-15\)
`a)6x(x-1999)-x+1999=0`
`<=>6x(x-1999)-(x-1999)=0`
`<=>(x-1999)(6x-1)=0`
`<=>` \(\left[ \begin{array}{l}x-1999=0\\6x-1=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=1999\\x=\dfrac16\end{array} \right.\)
`b)x^2-9-4(x+3)=0`
`<=>(x-3)(x+3)-4(x+3)=0`
`<=>(x+3)(x-3-4)=0`
`<=>(x+3)(x-7)=0`
`<=>` \(\left[ \begin{array}{l}x+3=0\\x-7=0\end{array} \right.\)
`<=>` \(\left[ \begin{array}{l}x=7\\x=-3\end{array} \right.\)