Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow7-x=\)\(\left(x+1\right)^2\)
\(\Leftrightarrow\)7-x=x2+2x+1
\(\Leftrightarrow\)x2+3x-6=0
\(\Leftrightarrow\)(\(x-\frac{-3+\sqrt{33}}{2}\))\(\times\)(\(x-\frac{-3-\sqrt{33}}{2}\))=0
\(\Leftrightarrow\)x=\(\frac{-3+\sqrt{33}}{2}\)hoặc x=\(\frac{-3-\sqrt{33}}{2}\)
Ta có: \(\sqrt{7-x}=x-1\Rightarrow x-1\ge0\Rightarrow x\ge1.\)
\(\sqrt{7-x}=x-1\Rightarrow\left(x-1\right)^2=7-x\)
\(\Rightarrow x^2-2x+1=7-x\)
\(\Rightarrow x^2-2x+x=7-1=6\)
\(\Rightarrow x\left(x-2+1\right)=x\left(x-1\right)=6\)
x;x-1 là 2 số nguyên liên tiếp và x>x-1
Mà \(6=2\cdot3\)(tích hai số nguyên liên tiếp)
=> x=3
\(\sqrt{7-x}=x-1\Leftrightarrow\left(\sqrt{7-x}\right)^2=\left(x-1\right)^2\Leftrightarrow7-x=x^2-2x+1\)
\(\Leftrightarrow6-x^2+x=0\Leftrightarrow\left(3-x\right)\left(x+2\right)=0\Leftrightarrow\orbr{\begin{cases}3-x=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
\(\sqrt{7-x}=x-1\)
\(\Leftrightarrow7-x=\left(x-1\right)^2\)
\(\Leftrightarrow7-x=x^2-2x+1\)
\(\Leftrightarrow x^2-2x+1-7+x=0\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow x^2-3x+2x-6=0\)
\(\Leftrightarrow x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right).\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
Vậy tập nghiệm \(S=\left\{3;-2\right\}\)
\(ĐKXĐ:x\le7\)
\(\sqrt{7-x}=x-1\)
\(\Leftrightarrow\left(\sqrt{7-x}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2=7-x\)
\(\Leftrightarrow x^2-2x+1=7-x\)
\(\Leftrightarrow x^2-2x+1+x-7=0\)
\(\Leftrightarrow x^2-x-6=0\)
Ta có \(\Delta=1^2+4.6=25,\sqrt{\Delta}=5\)
\(\Rightarrow\hept{\begin{cases}x_1=\frac{1+5}{2}=3\\x_2=\frac{1-5}{2}=-2\end{cases}}\)
Mà \(x-1\ge0\Leftrightarrow x\ge1\)(do \(\sqrt{7-x}\ge0\)) nên x = 3
Vậy nghiệm duy nhất là 3
mũ 2 từng vế ta có
\(7-x^2=x^2-2x+\)\(1\)
\(\Rightarrow x^2-2x+1-7+x^2=0\)
\(\Rightarrow2x^2-2x-6=0\)
\(\Rightarrow x^2-x-3=0\)
\(\Rightarrow x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{13}{4}=0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2=\frac{13}{4}\)
\(\Rightarrow x-\frac{1}{2}=\sqrt{\frac{13}{4}}hay-\sqrt{\frac{13}{4}}\)
\(\Rightarrow x=\frac{1}{2}+\sqrt{\frac{13}{4}}hay=\frac{1}{2}-\sqrt{\frac{13}{4}}\)
\(dk\hept{\begin{cases}x\ge-\sqrt{7}\\x\le\sqrt{7}\\x\ge1\end{cases}\Rightarrow1\le x\le\sqrt{7}}\)
\(\Leftrightarrow7-x^2=x^2-2x+1\Leftrightarrow x^2-x=3\)
\(\left(x-\frac{1}{2}\right)^2=\frac{1}{4}+3=\frac{13}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1-\sqrt{13}}{2}\left(loai\right)\\x=\frac{1+\sqrt{13}}{2}\left(nhan\right)\end{cases}}\)
\(=>\left(\sqrt{7-x}\right)^2=\left(x-1\right)^2\)
7-x=x^2+1^2-2x
7-x=x^2+1-2x
7=x^2+1-x
6=x^2-x
6=x(x-1)
=> x=-2 hoặc x=3
mọi người ơi câu b là giá trị tuyệt đối của x^2 -1 nha
giúp mình mình tick cho
a) \(\Leftrightarrow x^2+\dfrac{2}{3}x-x^2+\dfrac{3}{4}x=\dfrac{7}{12}\)
\(\Leftrightarrow\dfrac{17}{12}x=\dfrac{7}{12}\Leftrightarrow x=\dfrac{7}{17}\)
c) \(\Leftrightarrow\left[{}\begin{matrix}2x+1=-1\\2x+1=1\\2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\sqrt{x+1}=7\)
\(x+1=49\)
\(x=48\)
hok tốt
\(\sqrt{x+1}=7\)
\(\left(\sqrt{x+1}\right)^2=7^2\)
\(x+1=49\)
\(x=49-1\)
\(x=48\)