\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+15}=6\) 

ĐKXĐ:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

`sqrt{4x+20}-3sqrt{5+x}+4/3sqrt{9x+15}=6(x>=-5)`

`<=>sqrt{4(x+5)}-3sqrt{x+5}+4/3sqrt{9(x+5)}=6`

`<=>2sqrt{x+5}-3sqrt{x+5}+4sqrt{x+5}=6`

`<=>3sqrt{x+5}=6`

`<=>sqrt{x+5}=2`

`<=>x+5=4`

`<=>x=-1(tm)`

Vậy `x=-1`

31 tháng 7 2017

\(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

<=> x + 1 = 16

<=> x = 15 (nhận)

~ ~ ~

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow\sqrt{x+5}=2\)

<=> x + 5 = 4

<=> x = - 1 (nhận)

31 tháng 7 2017

tính tan40°×tan45°×tan50°
#Help me -.-

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

1. ĐKXĐ: $x\in\mathbb{R}$

PT $\Leftrightarrow 4x=\sqrt{(3x+1)^2}$

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x)^2=(3x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (4x-3x-1)(4x+3x+1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ (x-1)(7x+1)=0\end{matrix}\right.\Leftrightarrow x=1\)

Vậy $x=1$ là nghiệm của pt.

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

2. ĐKXĐ: $x\geq -5$

PT $\Leftrightarrow \sqrt{4}.\sqrt{x+5}-3\sqrt{5+x}+\frac{4}{3}.\sqrt{9}.\sqrt{x+5}=0$

$\Leftrightarrow 2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=0$

$\Leftrightarrow 3\sqrt{x+5}=0$

$\Leftrightarrow \sqrt{x+5}=0$

$\Leftrightarrow x=-5$

 

a: \(\Leftrightarrow\dfrac{2x-3}{x-1}=4\)

=>4x-4=2x-3

=>2x=1

hay x=1/2

b: \(\Leftrightarrow\sqrt{\dfrac{2x-3}{x-1}}=2\)

=>(2x-3)=4x-4

=>4x-4=2x-3

=>2x=1

hay x=1/2(nhận)

c: \(\Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\)

=>2x+3=0 hoặc 2x-3=4

=>x=-3/2 hoặc x=7/2

e: \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>căn (x-5)=2

=>x-5=4

hay x=9

10 tháng 7 2018

a)

\(\sqrt{25x}=35\)

\(\Leftrightarrow5\sqrt{x}=35\Leftrightarrow\sqrt{x}=7\Leftrightarrow x=49\)

Vậy phương trình đã cho có nghiệm x = 49 .

b)

\(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\Leftrightarrow\sqrt{x+5}=2\)

\(\Leftrightarrow x+5=4\Leftrightarrow x=-1\)

Vậy phương trình đã cho có nghiệm là x = -1.

25 tháng 10 2017

a.​\(\sqrt{9x+18}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25x+50}=6\\ \sqrt{9\left(x+2\right)}-5\sqrt{x+2}+\dfrac{4}{5}\sqrt{25\left(x+2\right)}=6\\ 3\sqrt{x+2}-5\sqrt{x+2}+4\sqrt{x+2}=6\\ 2\sqrt{x+2}=6\\ \left\{{}\begin{matrix}x\ge2\\x+2=36\end{matrix}\right.\\ \left\{{}\begin{matrix}x>=2\\x=34\end{matrix}\right.\\ \)

Vậy.....

25 tháng 10 2017

tks @Vi Lê Bình Phương nha

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

a)

ĐKXĐ: \(x> \frac{-5}{7}\)

Ta có: \(\frac{9x-7}{\sqrt{7x+5}}=\sqrt{7x+5}\)

\(\Rightarrow 9x-7=\sqrt{7x+5}.\sqrt{7x+5}=7x+5\)

\(\Rightarrow 2x=12\Rightarrow x=6\) (hoàn toàn thỏa mãn)

Vậy......

b) ĐKXĐ: \(x\geq 5\)

\(\sqrt{4x-20}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}\sqrt{9}.\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow 2\sqrt{x-5}=4\Rightarrow \sqrt{x-5}=2\Rightarrow x-5=2^2=4\Rightarrow x=9\)

(hoàn toàn thỏa mãn)

Vậy..........

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

c) ĐK: \(x\in \mathbb{R}\)

Đặt \(\sqrt{6x^2-12x+7}=a(a\geq 0)\Rightarrow 6x^2-12x+7=a^2\)

\(\Rightarrow 6(x^2-2x)=a^2-7\Rightarrow x^2-2x=\frac{a^2-7}{6}\)

Khi đó:

\(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow \frac{7-a^2}{6}+a=0\)

\(\Leftrightarrow 7-a^2+6a=0\)

\(\Leftrightarrow -a(a+1)+7(a+1)=0\Leftrightarrow (a+1)(7-a)=0\)

\(\Rightarrow \left[\begin{matrix} a=-1\\ a=7\end{matrix}\right.\) \(\Rightarrow a=7\)\(a\geq 0\)

\(\Rightarrow 6x^2-12x+7=a^2=49\)

\(\Rightarrow 6x^2-12x-42=0\Leftrightarrow x^2-2x-7=0\)

\(\Leftrightarrow (x-1)^2=8\Rightarrow x=1\pm 2\sqrt{2}\)

(đều thỏa mãn)

Vậy..........

28 tháng 10 2020

a) \(\sqrt{4-5x}=12\)

ĐK : x ≤ 4/5

Bình phương hai vế

⇔ \(4-5x=144\)

⇔ \(-5x=140\)

⇔ \(x=-28\)( tm )

b) \(\sqrt{1-4x+4x^2}=5\)

⇔ \(\sqrt{\left(1-2x\right)^2}=5\)

⇔ \(\left|1-2x\right|=5\)

⇔ \(\orbr{\begin{cases}1-2x=5\\1-2x=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

c) \(\sqrt{4x+20}-3\sqrt{5+x}+\frac{3}{4}\sqrt{9x+45}=6\)

ĐK : x ≥ -5

⇔ \(\sqrt{2^2\left(x+5\right)}-3\sqrt{x+5}+\frac{3}{4}\sqrt{3^2\left(x+5\right)}=6\)

⇔ \(\left|2\right|\sqrt{x+5}-3\sqrt{x+5}+\frac{3}{4}\cdot\left|3\right|\sqrt{x+5}=6\)

⇔ \(2\sqrt{x+5}-3\sqrt{x+5}+\frac{9}{4}\sqrt{x+5}=6\)

⇔ \(\frac{5}{4}\sqrt{x+5}=6\)

⇔ \(\sqrt{x+5}=\frac{24}{5}\)

⇔ \(x+5=\frac{576}{25}\)

⇔ \(x=\frac{451}{25}\)( tm )

d)\(\sqrt{x-2}\le3\)

ĐK : x ≥ 2

⇔ \(x-2\le9\)

⇔ \(x\le11\)

Kết hợp với điều kiện => Nghiệm của bpt là 2 ≤ x ≤ 11

5 tháng 9 2018

b)\(\sqrt{9-4\sqrt{5}}\)=\(\sqrt{9-\sqrt{80}}\)=\(\sqrt{\dfrac{9+\sqrt{9^2-80}}{2}}-\sqrt{\dfrac{9-\sqrt{9^2-80}}{2}}\)=\(\sqrt{5}\)\(-\)\(\sqrt{4}\)=\(2-\sqrt{5}\)

(dựa theo công thức có sẵn từ một quyển sách nâng cao:\(\sqrt{A\pm\sqrt{B}}\)=\(\sqrt{\dfrac{A+\sqrt{A^2-B}}{2}}\pm\sqrt{\dfrac{A-\sqrt{A^2-B}}{2}}\)

c: \(\Leftrightarrow4x^2-6x+9=16\)

\(\Leftrightarrow4x^2-6x-7=0\)

hay \(x\in\left\{\dfrac{3+\sqrt{37}}{4};\dfrac{3-\sqrt{37}}{4}\right\}\)

d: \(=\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15}{2}+\dfrac{5}{2}\sqrt{3}\)

\(=\dfrac{1}{2}\sqrt{3}+\dfrac{5}{2}\)

a: \(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+\dfrac{4}{3}\cdot3\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

=>x+5=4

hay x=-1

b: \(\Leftrightarrow5\sqrt{x-1}-\dfrac{15}{2}\cdot\dfrac{\sqrt{x-1}}{3}-\sqrt{x-1}=6\)

\(\Leftrightarrow\sqrt{x-1}\cdot\dfrac{3}{2}=6\)

\(\Leftrightarrow\sqrt{x-1}=4\)

=>x-1=16

hay x=17