\(\left(-\frac{3}{2}x+2\right)^{20}+\left(y^2-\frac{4}{9}\right)^{10}\le0...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

VC
14 tháng 7 2021

\(\left(-\frac{3}{2}x+2\right)^{20}+\left(y^2-\frac{4}{9}\right)^{10}\le0\)

Vì cả \(\left(-\frac{3}{2}x+2\right)^{20};\left(y^2-\frac{4}{9}\right)^{10}\ge0\Rightarrow\)\(\left(-\frac{3}{2}x+2\right)^{20}+\left(y^2-\frac{4}{9}\right)^{10}=0\)

\(\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}x+2=0\\y^2-\frac{4}{9}=0\end{cases}\Leftrightarrow\hept{x=\frac{4}{3}}}\)

19 tháng 8 2019

nhầm a, \(x^2+\left(9-\frac{1}{10}\right)^2=0\)

\(a;x^2+\left(9-\frac{1}{10}\right)^2=0\)

\(\Leftrightarrow x^2+\frac{89^2}{100}=0\)

\(\Leftrightarrow x^2=-\frac{7921}{100}\)

\(x^2\ge0\Rightarrow x\in\varnothing\)

16 tháng 8 2015

 \(\left(x-1\right)^2+\left(y-3\right)^2=0\)

mà  \(\left(x-1\right)^2\ge0;\left(y-3\right)^2\ge0\)

nên để: \(\left(x-1\right)^2+\left(y-3\right)^2=0\) thì:

  \(x-1=y-3=0\Rightarrow x=1;y=3\)

 

16 tháng 8 2015

a)x-1=y-3=0

x=1 va y=3

b)2x-1/2=y+3/2=0

x=1/4 va y=-3/2

c)1/2x-5=y2-1/4=0

1/2.x=5 va y2=1/4

x=10 va y=1/2 hoac x=10 va y=-1/2

8 tháng 9 2015

1/2x-5=y2-1/4=0

1/2.x=5 va y2=1/4

x=10 va y=1/2 hoac x=10 va y=-1/2

8 tháng 9 2015

Á thiếu, \(y=\frac{-1}{2}\)nữa

14 tháng 9 2017

Xét  \(\left(\frac{1}{2}x-5\right)^{20}\ge0\)

         \(\left(y^2-\frac{1}{4}\right)^{10}\ge0\)

\(\Rightarrow\)  \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\ge0\)

mà  \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}=0\)

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=10\\y=\pm\frac{1}{2}\end{cases}}\)

14 tháng 9 2017

x=10;y=1/2

31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

23 tháng 7 2016

Vì \(\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}\ge0\\\left(y^2-\frac{1}{4}\right)^{10}\ge0\end{cases}\Rightarrow\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}}\ge0\)

Theo đề bài:

 \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}\le0\)

=> \(\left(\frac{1}{2}x-5\right)^{20}+\left(y^2-\frac{1}{4}\right)^{10}=0\)

<=>\(\hept{\begin{cases}\left(\frac{1}{2}x-5\right)^{20}=0\\\left(y^2-\frac{1}{4}\right)^{10}=0\end{cases}}\)

<=>\(\hept{\begin{cases}\frac{1}{2}x-5=0\\y^2-\frac{1}{4}=0\end{cases}}\)

<=>\(\hept{\begin{cases}\frac{1}{2}x=5\\y^2=\frac{1}{4}\end{cases}}\)

<=>\(x=10\) và \(y=-\frac{1}{4}\) hoặc \(y=\frac{1}{4}\)

Vậy ...

23 tháng 7 2016

thanks 

Bài 1:...
Đọc tiếp

Bài 1: Tính

a. \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)+\left(1+\frac{1}{4\cdot6}\right).....\left(1+\frac{1}{99\cdot101}\right)\)

b. \(\left[\sqrt{0,64}+\sqrt{0,0001}-\sqrt{\left(-0,5\right)^2}\right]\div\left[3\cdot\sqrt{\left(0,04\right)^2}-\sqrt{\left(-2\right)^4}\right]\)

c. \(\frac{5.4^{15}\cdot9^9-4.3^{20}\cdot8^9}{5\cdot2^9\cdot6^{19}-7\cdot2^{29}\cdot27^6}-\frac{2^{19}\cdot6^{15}-7\cdot6^{10}\cdot2^{20}\cdot3^6}{9\cdot6^{19}\cdot2^9-4\cdot3^{17}\cdot2^{26}}+0,\left(6\right)\)

Bài 2: Tìm x, y, z biết :
a. \(\left(x-10\right)^{1+x}=\left(x-10\right)^{x+2009}\left(x\in Z\right)\)

b. \(\left|x-2007\right|+\left|x-2008\right|+\left|y-2009\right|+\left|x-2010\right|=3\left(x,y\in N\right)\) 

c. \(25-y^2=8\left(x-2009\right)^2\left(x,y\in Z\right)\)

d. \(2008\left(x-4\right)^2+2009\left|x^2-16\right|+\left(y+1\right)^2\le0\)

e. \(2x=3y\) ; \(4z=5x\) và \(3y^2-z^2=-33\)

Bài 3: Chứng minh rằng

a. \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2009^2}>\frac{1}{2009}\)

b. \(\left[75\cdot\left(4^{2008}+4^{2007}+4^{2006}+...+4+1\right)+25\right]⋮100\)

Bài 4: 

a. Tìm giá trị nhỏ nhất của biểu thức : \(M=\left(x^2+2\right)+\left|x+y-2009\right|+2005\)

b. So sánh: \(31^{11}\) và \(\left(-17\right)^{14}\)

c. So sánh: \(\left(\frac{9}{11}-0,81\right)^{2012}\) và \(\frac{1}{10^{4024}}\)

1

Bài 1 :\(a,=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}...\frac{100^2}{99.101}\)

           \(=\frac{2.3.4...100}{1.2.3...99}.\frac{2.3.4...100}{3.4...101}\)

          \(=100.\frac{2}{101}=\frac{200}{101}\)

16 tháng 6 2016

Hỏi đáp Toán

16 tháng 6 2016

a) \(\left|3x-\frac{1}{2}\right|+\left|\frac{1}{2}y+\frac{3}{5}\right|=0\)

=>\(3x-\frac{1}{2}=0;\frac{1}{2}y+\frac{3}{5}=0\left(\left|3x-\frac{1}{2}\right|;\left|\frac{1}{2}y+\frac{3}{5}\right|\ge0\right)\)

=>\(x=\frac{1}{6};y=\frac{-6}{5}\)

b)\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\le0\)

Ta lại có:

\(\left|\frac{3}{2}x+\frac{1}{9}\right|+\left|\frac{1}{5}y-\frac{1}{2}\right|\ge0\)

=>\(\frac{3}{2}x+\frac{1}{9}=0;\frac{1}{5}y-\frac{1}{2}=0\Rightarrow x=-\frac{2}{27};y=\frac{5}{2}\)