Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(\forall x\) ta có :
+) \(\left|x+\dfrac{1}{2}\right|\ge0\)
+) \(\left|x+\dfrac{1}{6}\right|\ge0\)
..........................
+) \(\left|x+\dfrac{1}{110}\right|\ge0\)
\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+.........+\left|x+\dfrac{1}{110}\right|\ge0\)
Mà \(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+........+\left|x+\dfrac{1}{110}\right|=11x\)
\(\Leftrightarrow11x\ge0\)
\(\Leftrightarrow x\ge0\)
Với \(x\ge0\) thì :
+) \(\left|x+\dfrac{1}{2}\right|=x+\dfrac{1}{2}\)
+) \(\left|x+\dfrac{1}{6}\right|=x+\dfrac{1}{6}\)
.....................................
+) \(\left|x+\dfrac{1}{110}\right|=x+\dfrac{1}{110}\)
\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{6}+......+x+\dfrac{1}{110}=11x\)
\(\Leftrightarrow11x+\left(\dfrac{1}{2}+\dfrac{1}{6}+........+\dfrac{1}{110}\right)=11x\)
\(\Leftrightarrow0x=\dfrac{1}{2}+\dfrac{1}{6}+....+\dfrac{1}{110}\) (vô lí)
\(\Leftrightarrow x\in\varnothing\)
\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{6}\right|+...+\left|x+\dfrac{1}{110}\right|=11x\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{6}+x+\dfrac{1}{12}+...+x+\dfrac{1}{110}=11x\)
\(\Leftrightarrow10x+\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{10.11}\right)=11x\)
\(\Leftrightarrow x=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(\Leftrightarrow x=1-\dfrac{1}{11}=\dfrac{10}{11}\left(tm\right)\)
a: TH1: x>=0
=>x+x=1/3
=>x=1/6(nhận)
TH2: x<0
Pt sẽ là -x+x=1/3
=>0=1/3(loại)
b: \(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2-x-2=0\end{matrix}\right.\Leftrightarrow x=2\)
c: \(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{x-1}-\dfrac{2}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{x-20-2x+2}{\left(x-1\right)\left(x-20\right)}=\dfrac{-3}{4}\)
\(\Leftrightarrow-3\left(x^2-21x+20\right)=4\left(-x-18\right)\)
\(\Leftrightarrow3x^2-63x+60=4x+72\)
=>3x^2-67x-12=0
hay \(x\in\left\{22.51;-0.18\right\}\)
\(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}+\dfrac{1}{x-20}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{x}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}+\dfrac{1}{x-20}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{x-1}=\dfrac{3}{4}\Rightarrow3x-3=4\Rightarrow x=\dfrac{7}{3}\)
Chúc bạn học tốt!
\(\Leftrightarrow\dfrac{2}{x-3}-\dfrac{2}{x-2}+\dfrac{1}{x-8}-\dfrac{1}{x-3}+\dfrac{1}{x-20}-\dfrac{1}{x-8}-\dfrac{1}{x-20}=\dfrac{-3}{4}\)
\(\Leftrightarrow\dfrac{1}{x-3}-\dfrac{2}{x-2}=\dfrac{-3}{4}\)
\(\Leftrightarrow4\left(x-2\right)-8\left(x-3\right)=-3\left(x-3\right)\left(x-2\right)\)
\(\Leftrightarrow4x-8-8x+24+3\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow3x^2-15x+18-4x+16=0\)
\(\Leftrightarrow3x^2-19x+34=0\)
\(\text{Δ}=\left(-19\right)^2-4\cdot3\cdot34=-47< 0\)
Do đó: Phương trình vô nghiệm
a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)
=>x+1=0
hay x=-1
b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)
=>x-2010=0
hay x=2010
c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)
\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)
=>x=15
\(ĐKXĐ:x\ne1,x\ne3,x\ne8,x\ne20\)
\(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)
\(\Rightarrow\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}-\dfrac{1}{x-20}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{2\left(x-8\right)\cdot\left(x-20\right)+5\left(x-1\right)\cdot\left(x-20\right)+12\left(x-1\right)\cdot\left(x-3\right)-\left(x-1\right)\cdot\left(x-3\right)\cdot\left(x-8\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{\left(2x-16\right)\cdot\left(x-20\right)+\left(5x-5\right)\cdot\left(x-20\right)+\left(12x-12\right)\cdot\left(x-3\right)-\left(x^2-3x-x+3\right)\cdot\left(x-8\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{2x^2-40x-16x+320+5x^2-100x-5x+100+12x^2-36x-12x+36-\left(x^2-4x+3\right)\cdot\left(x-8\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{2x^2-40x-16x+320+5x^2-100x-5x+100+12x^2-36x-\left(x^3-8x^2-4x^2+32x+3x-24\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}\)
\(\Leftrightarrow\dfrac{2x^2-40x-16x+320+5x^2-100x-5x+100+12x^2-36x-12x+36-\left(x^3-12x^2+35x-24\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{2x^2-40x-16x+320+5x^2-100x-5x+100+12x^2-36x-12x+36-x^3+12x^2-35x+24}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{31x^2-244x+480-x^3}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-x^3+31x^2-244x+480}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-x^3+3x^2+28x^2-84x-160x+480}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-x^2\cdot\left(x-3\right)+28x\cdot\left(x-3\right)-160\left(x-3\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-\left(x-3\right)\left(x^2-28x+160\right)}{\left(x-1\right)\left(x-3\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-1\left(x^2-8x-20x+160\right)}{\left(x-1\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-1\left(x^2-8x-20x+160\right)}{\left(x-1\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-1\left(x\cdot\left(x-8\right)-20\left(x-8\right)\right)}{\left(x-1\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-1\left(x-20\right)\left(x-8\right)}{\left(x-1\right)\left(x-8\right)\left(x-20\right)}=-\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{-1}{x-1}=-\dfrac{3}{4}\)
\(\Leftrightarrow-\dfrac{1}{x-1}=-\dfrac{3}{4}\)
\(\Leftrightarrow-4=-3\left(x-1\right)\)
\(\Leftrightarrow-4=-3\left(x-1\right)\)
\(\Leftrightarrow-4=-3x+3\)
\(\Leftrightarrow3x=3+4\)
\(\Leftrightarrow3x=7\)
\(\Rightarrow x=\dfrac{7}{3}\)
Vậy \(x=\dfrac{7}{3}\)
cho ngu ké với bài này lớp 5 dư sức làm áp dụng 1/n(n+1)=1/n-1/n+1
\(\dfrac{2}{\left(x-1\right)\left(x-3\right)}+\dfrac{5}{\left(x-3\right)\left(x-8\right)}+\dfrac{12}{\left(x-8\right)\left(x-20\right)}+\dfrac{1}{x-20}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{x-1}-\dfrac{1}{x-3}+\dfrac{1}{x-3}-\dfrac{1}{x-8}+\dfrac{1}{x-8}-\dfrac{1}{x-20}+\dfrac{1}{x-20}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{x-1}=\dfrac{3}{4}\Rightarrow3x-3=4\Rightarrow x=\dfrac{7}{3}\)
Vậy...