\(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

\(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)

=> \(\left|x\left(x-3\right)\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)

Vì |x(x - 3)| \(\ge\)0 với mọi x

|(x + 1)(x - 3)| \(\ge\)0 với mọi x

=> Để \(\left|x\left(x-3\right)\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)

=> \(\hept{\begin{cases}x\left(x-3\right)=0\\\left(x+1\right)\left(x-3\right)=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\text{ hoặc }x-3=0\\x+1=0\text{ hoặc }x-3=0\end{cases}}\)

=> \(\hept{\begin{cases}x=0\text{ hoặc }x=3\\x=-1\text{ hoặc }x=3\end{cases}}\)

Mà x ko thể cùng lúc nhận nhiều giá trị

=> x = 3 thỏa mãn đề bài 

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

22 tháng 2 2020

a) (x-1)x+2=(x-1)2.(x-1)x+2

=> (x-1)2=1

=> x-1=1

=>x=2

22 tháng 2 2020

b) | 3x - 4 | + | 5y + 5 | = 0   

Ta có  \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|5y+5\right|\ge0\end{cases}\forall xy}\)

\(\Leftrightarrow\left|3x-4\right|+\left|5y+5\right|\ge0\forall xy\)  

Do đó để tổng | 3x - 4 | + | 5y + 5 | = 0    thì \(\hept{\begin{cases}\left|3x-4\right|=0\\\left|5y+5\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x-4=0\\5y+5=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=4\\5y=-5\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=-1\end{cases}}\)

Vậy \(x=\frac{4}{3}\) và y= - 1 

c) | x + 3 | + | x + 1 | = 3x  (*1)

Ta có \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\forall x}\)

\(\Leftrightarrow\) | x + 3 | + | x + 1 | \(\ge0\forall\)x

\(\Leftrightarrow3x\ge0\forall x\)

\(\Leftrightarrow x\ge0\)

\(\Leftrightarrow x+3>x+1>x\ge0\)

\(\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=x+3\\\left|x+1\right|=x+1\end{cases}}\)

\(\Leftrightarrow\left|x+3\right|+\left|x+1\right|=x+3+x+1\)

\(\Leftrightarrow\left|x+3\right|+\left|x+1\right|=2x+4\)  (*2)

Từ (*1) và (*2) <=> 2x + 4 = 3x

\(\Leftrightarrow4=3x-2x\)

\(\Leftrightarrow x=4\)

Vậy x = 4

Câu a t đang nghi sai đề

Lát t lm đc thì lm sau nhé

24 tháng 7 2016

b,  \(\Leftrightarrow x\left(x-3\right)+\left(x+1\right)\left(x-3\right)=0\)

     \(\Leftrightarrow\left(x-3\right)\left(x+x+1\right)=0\)

     \(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)

     \(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\2x+1=0\end{array}\right.\) 

     \(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\2x=-1\end{array}\right.\)

     \(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{-1}{2}\end{array}\right.\)

     

24 tháng 7 2016

a)  |x-y|+|x-9|=0

    =>   

|x-y|0
|x-9|0
x9;-9
y9;-9

 

 

b)    |x2-3x|+|(x+1).(x-3)|=0

   

    xét    x2-3x|=0

           => x2-3x=0

                x(x-3)=0

              =>x=0 hoặc x-3=0

                                => x=3

            |(x+1)(x-3)|=0

     => (x+1)(x-3)=0

th1  x=0

   (0+1).(0-3)=0

   -1.(-3)=0(loại)

th2 x=3

     (3+1)(3-3)=0

     4.0=0 (lấy)

     => x=0

11 tháng 6 2018

Làm tiếp nè :

2) / 2x + 4/ = 2x - 5

Do : / 2x + 4 / ≥ 0 ∀x

⇒ 2x - 5 ≥ 0

⇔ x ≥ \(\dfrac{5}{2}\)

Bình phương hai vế của phương trình , ta có :

( 2x + 4)2 = ( 2x - 5)2

⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0

⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0

⇔ 9( 4x - 1) = 0

⇔ x = \(\dfrac{1}{4}\) ( KTM)

Vậy , phương trình vô nghiệm .

3) / x + 3/ = 3x - 1

Do : / x + 3 / ≥ 0 ∀x

⇒ 3x - 1 ≥ 0

⇔ x ≥ \(\dfrac{1}{3}\)

Bình phương hai vế của phương trình , ta có :

( x + 3)2 = ( 3x - 1)2

⇔ ( x + 3)2 - ( 3x - 1)2 = 0

⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0

⇔ ( 4 - 2x)( 4x + 2) = 0

⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)

KL......

4) / x - 4/ + 3x = 5

⇔ / x - 4/ = 5 - 3x

Do : / x - 4/ ≥ 0 ∀x

⇒ 5 - 3x ≥ 0

⇔ x ≤ \(\dfrac{-5}{3}\)

Bình phương cả hai vế của phương trình , ta có :

( x - 4)2 = ( 5 - 3x)2

⇔ ( x - 4)2 - ( 5 - 3x)2 = 0

⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0

⇔ ( 4x - 9)( 1 - 2x) = 0

⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)

KL......


Làm tương tự với các phần khác nha

11 tháng 6 2018

1)\(\left|4x\right|=3x+12\)

\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)

\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)

\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)

Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)

16 tháng 10 2016

a) \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}}\)

b)\(\orbr{\begin{cases}3x=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)

c)\(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)

d)\(\orbr{\begin{cases}x^2\\x+4=0\end{cases}=0\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}}\)

e)\(\orbr{\begin{cases}\left(x+1\right)^2\\3x-5=0\end{cases}=0}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{5}{3}\end{cases}}\)

g)\(x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varphi\)

h)Tương tự các câu trên

i) x = 0

k)\(\left(\frac{3}{4}\right)^x=1=\left(\frac{3}{4}\right)^0\Rightarrow x=0\)

l)\(\left(\frac{2}{5}\right)^{x+1}=\frac{8}{125}=\left(\frac{2}{5}\right)^3\)

=> x + 1 = 3 => x = 2

16 tháng 10 2016

x.(x+1)=0

suy ra x=0 hoac x+1=0

                               x=0-1

                              x=-1

vay x=0 hoac  x=-1

mấy câu sau cũng làm tương tự

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

24 tháng 10 2017

Đối với các dạng toán như thế này thì phải xét khoảng

24 tháng 10 2017

Bạn giải giúp mình vời. Mình sẽ k cho bạn