Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, \(\Leftrightarrow x\left(x-3\right)+\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+x+1\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\2x+1=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\2x=-1\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=\frac{-1}{2}\end{array}\right.\)
a) |x-y|+|x-9|=0
=>
|x-y| | 0 |
|x-9| | 0 |
x | 9;-9 |
y | 9;-9 |
b) |x2-3x|+|(x+1).(x-3)|=0
xét x2-3x|=0
=> x2-3x=0
x(x-3)=0
=>x=0 hoặc x-3=0
=> x=3
|(x+1)(x-3)|=0
=> (x+1)(x-3)=0
th1 x=0
(0+1).(0-3)=0
-1.(-3)=0(loại)
th2 x=3
(3+1)(3-3)=0
4.0=0 (lấy)
=> x=0
b) | 3x - 4 | + | 5y + 5 | = 0
Ta có \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|5y+5\right|\ge0\end{cases}\forall xy}\)
\(\Leftrightarrow\left|3x-4\right|+\left|5y+5\right|\ge0\forall xy\)
Do đó để tổng | 3x - 4 | + | 5y + 5 | = 0 thì \(\hept{\begin{cases}\left|3x-4\right|=0\\\left|5y+5\right|=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x-4=0\\5y+5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x=4\\5y=-5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=-1\end{cases}}\)
Vậy \(x=\frac{4}{3}\) và y= - 1
c) | x + 3 | + | x + 1 | = 3x (*1)
Ta có \(\hept{\begin{cases}\left|x+3\right|\ge0\\\left|x+1\right|\ge0\end{cases}\forall x}\)
\(\Leftrightarrow\) | x + 3 | + | x + 1 | \(\ge0\forall\)x
\(\Leftrightarrow3x\ge0\forall x\)
\(\Leftrightarrow x\ge0\)
\(\Leftrightarrow x+3>x+1>x\ge0\)
\(\Leftrightarrow\hept{\begin{cases}\left|x+3\right|=x+3\\\left|x+1\right|=x+1\end{cases}}\)
\(\Leftrightarrow\left|x+3\right|+\left|x+1\right|=x+3+x+1\)
\(\Leftrightarrow\left|x+3\right|+\left|x+1\right|=2x+4\) (*2)
Từ (*1) và (*2) <=> 2x + 4 = 3x
\(\Leftrightarrow4=3x-2x\)
\(\Leftrightarrow x=4\)
Vậy x = 4
Câu a t đang nghi sai đề
Lát t lm đc thì lm sau nhé
Bài 1:
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)
Ta thấy:
\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)
\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)
\(\Rightarrow10x+\frac{10}{11}=0\)
\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)
Bài 2:
Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)
\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)
Mà \(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)
\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)
\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)
\(\left|x-1\right|+2\left|x-2\right|+3\left|x-3\right|+4\left|x-4\right|+5\left|x-5\right|+20x=0\left(1\right)\)
TH1: x<1
(1) trở thành 1-x+2(2-x)+3(3-x)+4(4-x)+5(5-x)+20x=0
=>\(1-x+4-2x+9-3x+16-4x+25-5x+20x=0\)
=>\(5x+55=0\)
=>x=-11(nhận)
TH2: 1<=x<2
Phương trình (1) sẽ trở thành:
\(x-1+2\left(2-x\right)+3\left(3-x\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+4-2x+9-3x+16-4x+25-5x+20x=0\)
=>\(7x+53=0\)
=>\(x=-\dfrac{53}{7}\left(loại\right)\)
TH3: 2<=x<3
Phương trình (1) sẽ trở thành:
\(x-1+2\left(x-2\right)+3\left(3-x\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+2x-4+9-3x+16-4x+25-5x+20x=0\)
=>\(11x+45=0\)
=>\(x=-\dfrac{45}{11}\left(loại\right)\)
TH4: 3<=x<4
Phương trình (1) sẽ trở thành:
\(x-1+2\left(x-2\right)+3\left(x-3\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+2x-4+3x-9+16-4x+25-5x+20x=0\)
=>\(-3x+27=0\)
=>x=9(loại)
TH5: 4<=x<5
Phương trình (1) sẽ trở thành:
\(\left(x-1\right)+2\left(x-2\right)+3\left(x-3\right)+4\left(x-4\right)+5\left(5-x\right)+20x=0\)
=>\(x-1+2x-4+3x-9+4x-16+25-5x+20x=0\)
=>\(25x-5=0\)
=>x=1/5(loại)
TH6: x>=5
Phương trình (1) sẽ trở thành:
\(\left(x-1\right)+2\left(x-2\right)+3\left(x-3\right)+4\left(x-4\right)+5\left(x-5\right)+20x=0\)
=>\(x-1+2x-4+3x-9+4x-16+5x-25+20x=0\)
=>35x-55=0
=>x=55/35(loại)
Nhận thấy x2 + 1 \(\ge\)1 > 0 \(\forall\)x
=> \(\left(2x^2-3\right)\left(3x^2-\frac{1}{0,12}\right)\left(x^2+1\right)=0\)
<=> \(\orbr{\begin{cases}2x^2-3=0\\3x^2-\frac{1}{0,12}=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x^2=3\\3x^2=\frac{1}{0,12}\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=\frac{3}{2}\\x^2=\frac{1}{0,36}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{3}{2}}\\x=\pm\frac{1}{0,6}\end{cases}}\)
Vậy \(x\in\left\{\sqrt{\frac{3}{2}};-\sqrt{\frac{3}{2}};-\frac{1}{0,6};\frac{1}{0,6}\right\}\)là giá trị cần tìm
\(\left(2x^2-3\right)\left(3x^2-\frac{1}{0,12}\right)\left(x^2+1\right)=0\)
Nhận thấy rằng x2 + 1 ≥ 1 > 0 ∀ x
=> \(\left(2x^2-3\right)\left(3x^2-\frac{1}{0,12}\right)\left(x^2+1\right)=0\)
<=> \(\orbr{\begin{cases}2x^2-3=0\\3x^2-\frac{1}{0,12}=0\end{cases}}\)
+) 2x2 - 3 = 0
<=> 2x2 = 3
<=> x2 = 3/2
<=> x = \(\pm\sqrt{\frac{3}{2}}\)
+) 3x2 - 1/0,12 = 0
<=> 3x2 - 25/3 = 0
<=> 3x2 = 25/3
<=> x2 = 25/9
<=> x = \(\pm\frac{5}{3}\)
Vậy S = { \(\pm\frac{5}{3}\); \(\pm\sqrt{\frac{3}{2}}\))
\(\left|x^2-3x\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)
=> \(\left|x\left(x-3\right)\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)
Vì |x(x - 3)| \(\ge\)0 với mọi x
|(x + 1)(x - 3)| \(\ge\)0 với mọi x
=> Để \(\left|x\left(x-3\right)\right|+\left|\left(x+1\right)\left(x-3\right)\right|=0\)
=> \(\hept{\begin{cases}x\left(x-3\right)=0\\\left(x+1\right)\left(x-3\right)=0\end{cases}}\)
=> \(\hept{\begin{cases}x=0\text{ hoặc }x-3=0\\x+1=0\text{ hoặc }x-3=0\end{cases}}\)
=> \(\hept{\begin{cases}x=0\text{ hoặc }x=3\\x=-1\text{ hoặc }x=3\end{cases}}\)
Mà x ko thể cùng lúc nhận nhiều giá trị
=> x = 3 thỏa mãn đề bài