K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2018

\(\left|\left(x-1\right)^2+1\right|+\left|\left(x-1\right)^2-4\right|=5\)

\(\Rightarrow\left(x-1\right)^2+1+\left(x-1\right)^2+4=5\)

\(\Rightarrow\left(x-1\right)^2\left(x+1\right)+5=5\)

\(\Rightarrow\left(x-1\right)^2.\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x+1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Vậy ....

\(\left|x-1\right|+2\left|x-2\right|+3\left|x-3\right|+4\left|x-4\right|+5\left|x-5\right|+20x=0\left(1\right)\)

TH1: x<1

(1) trở thành 1-x+2(2-x)+3(3-x)+4(4-x)+5(5-x)+20x=0

=>\(1-x+4-2x+9-3x+16-4x+25-5x+20x=0\)

=>\(5x+55=0\)

=>x=-11(nhận)

TH2: 1<=x<2

Phương trình (1) sẽ trở thành:

\(x-1+2\left(2-x\right)+3\left(3-x\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)

=>\(x-1+4-2x+9-3x+16-4x+25-5x+20x=0\)

=>\(7x+53=0\)

=>\(x=-\dfrac{53}{7}\left(loại\right)\)

TH3: 2<=x<3

Phương trình (1) sẽ trở thành:

\(x-1+2\left(x-2\right)+3\left(3-x\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)

=>\(x-1+2x-4+9-3x+16-4x+25-5x+20x=0\)

=>\(11x+45=0\)

=>\(x=-\dfrac{45}{11}\left(loại\right)\)

TH4: 3<=x<4

Phương trình (1) sẽ trở thành:

\(x-1+2\left(x-2\right)+3\left(x-3\right)+4\left(4-x\right)+5\left(5-x\right)+20x=0\)

=>\(x-1+2x-4+3x-9+16-4x+25-5x+20x=0\)

=>\(-3x+27=0\)

=>x=9(loại)

TH5: 4<=x<5

Phương trình (1) sẽ trở thành:

\(\left(x-1\right)+2\left(x-2\right)+3\left(x-3\right)+4\left(x-4\right)+5\left(5-x\right)+20x=0\)

=>\(x-1+2x-4+3x-9+4x-16+25-5x+20x=0\)

=>\(25x-5=0\)

=>x=1/5(loại)

TH6: x>=5

Phương trình (1) sẽ trở thành:

\(\left(x-1\right)+2\left(x-2\right)+3\left(x-3\right)+4\left(x-4\right)+5\left(x-5\right)+20x=0\)

=>\(x-1+2x-4+3x-9+4x-16+5x-25+20x=0\)

=>35x-55=0

=>x=55/35(loại)

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

NM
29 tháng 7 2021

a. ta có :

\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)

Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm

b.ta có 

\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)

Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm

28 tháng 9 2021

a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)

Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)

Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)