Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đầu bài trên tớ làm luôn nhá !!!
a, / 3x+1/= 5-3
/ 3x+1/= 2
3x+1=2
x+1 = 2:3
x+1 = 2 phần 3
x= 2/3 -1
x= -1/3
b)\(\left|21x-5\right|=\left|3x-7\right|\)
\(\Leftrightarrow\begin{cases}21x-5=3x-7\\21x-5=7-3x\end{cases}\)
\(\Leftrightarrow\begin{cases}9x=-1\\24x=12\end{cases}\)
\(\Leftrightarrow\begin{cases}x=-\frac{1}{9}\\x=\frac{1}{2}\end{cases}\)
a)\(\left|2x-7\right|=3\)
\(\Rightarrow2x-7=\pm3\)
Nếu \(2x-7=3\)
\(\Rightarrow2x=10\)
\(\Rightarrow x=5\)
Nếu \(2x-7=-3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
a) \(|3x-1|=|x+3|\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=x+3\\-3x+1=x+3\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=4\\-2x=2\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
Vậy x={2;-1}
b) \(|x-1|+3x=1\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=1-3x\\-x+1=1-3x\end{cases}\Leftrightarrow\orbr{\begin{cases}4x=2\\2x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{2}\\x=0\end{cases}}}\)
Vậy x={\(\frac{1}{2};0\)}
c) làm tương tự câu b)
a)<=> \(\left[\begin{array}{nghiempt}3x-2=7+x\\3x-2=-7-x\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x=\frac{9}{2}\\x=-\frac{5}{4}\end{array}\right.\)
b) | 2x-3|>5<=> \(\left[\begin{array}{nghiempt}2x-3>5\\2x-3< -5\end{array}\right.\)<=>\(\left[\begin{array}{nghiempt}x>4\\x< -1\end{array}\right.\)
c) |3x-1|<7<=>\(\left[\begin{array}{nghiempt}3x-1< 7\\3x-1>-7\end{array}\right.\)<=>\(\left[\begin{array}{nghiempt}x< \frac{8}{3}\\x>-2\end{array}\right.\)
d, xét từng TH1: x<-3/2
TH2:\(\frac{-3}{2}\le0\le\frac{5}{3}\)
TH3:x \(\ge\frac{5}{3}\)
(3x - 7)2015 = (3x - 7)2017
(3x - 7)2017 - (3x - 7)2015 = 0
(3x - 7)2017[(3x - 7)2 - 1] = 0
=> (3x - 7)2017 = 0 hoặc (3x - 7)2 = 1
=> 3x - 7 = 0 hoặc 3x - 7 = ± 1
=> x = 7/3 hoặc x = { 8/3 ; 2 }
Vậy x = { 2; 7/3; 8/3 }
\(y\left(y^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}y=0\\y^2-1=0\end{cases}}\)