K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

a) Ta có:

\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)

\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)

\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)

\(=x+2x+-3+1-21\)

\(=3x-23\)

=> \(3x-23=2020\)

\(3x=2020+23=2043\)

=> \(x=2043:3=681\)

17 tháng 3 2019

Nhầm

\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)

\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)

Y
14 tháng 5 2019

Đặt \(a=\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}\)

\(b=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2020^2}\)

Khi đó : \(D=ab-\left(b+1\right)\left(a-1\right)\)

\(\Rightarrow D=ab-\left(ab+a-b-1\right)\)

\(\Rightarrow D=b-a+1=\frac{1}{2020^2}-1+1=\frac{1}{2020^2}\)

10 tháng 4 2021

a) Quy luật là gì ??

b) 

Đặt

 \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\\\Rightarrow2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2019}}\\ \Rightarrow2A-A=1-\dfrac{1}{2^{2020}}\Rightarrow A=1-\dfrac{1}{2^{2020}}\)

Suy ra , phương trình trở thành :

213 -x  =13

<=> x=200

4 tháng 5 2019

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x(x+1)}=\frac{2019}{2020}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2019}{2020}\)

\(\Rightarrow1-\frac{1}{x+1}=\frac{2019}{2020}\)

\(\Rightarrow\frac{1}{x+1}=1-\frac{2019}{2020}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2020}\)

\(\Rightarrow x+1=2020\Leftrightarrow x=2019\)

Vậy x = 2019

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Bạn xem lại. Biểu thức C có GTLN chứ không có GTNN bạn nhé.

Ta có: \(A=\left(2020^{2019}+2019^{2019}\right)^{2020}\)

\(=\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)\)

\(\Leftrightarrow\dfrac{A}{B}=\dfrac{\left(2019^{2019}+2020^{2019}\right)^{2019}\cdot\left(2019^{2019}+2020^{2019}\right)}{\left(2020^{2020}+2019^{2020}\right)^{2019}}\)

\(\Leftrightarrow\dfrac{A}{B}=\dfrac{2019^{2019}+2020^{2019}}{2019+2020}>1\)

\(\Leftrightarrow A>B\)