\(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\times503...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2020

\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{100}\right).200x=4036\)

\(\Leftrightarrow\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{99}{100}.200x=4036\)

\(\Leftrightarrow\frac{1.2.3...99}{2.3.4....100}.200x=4036\)

\(\Leftrightarrow\frac{1}{100}.200x=4036\)

\(\Leftrightarrow\frac{1}{100}.200x=4036\)

\(\Leftrightarrow2x=4036\)

\(\Leftrightarrow x=4036:2=2018\)

19 tháng 7 2020

\(\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times...\times\left(1-\frac{1}{100}\right)\times200\times x=4036\)

=> \(\frac{1}{2}\times\frac{2}{3}\times...\times\frac{99}{100}\times200\times x=4036\)

=> \(\frac{1\times2\times...\times99}{2\times3\times...\times100}\times200\times x=4036\)

\(\Rightarrow\frac{1}{100}\times200\times x=4036\)

\(\Rightarrow2\times x=4036\)

=> x = 2018 

19 tháng 8 2019

\(a,\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)

\(=\frac{1}{2}-\frac{1}{6}=\frac{1}{3}\)

\(b,\left(1-\frac{1}{2}\right)\times\left(1-\frac{1}{3}\right)\times\left(1-\frac{1}{4}\right)=\frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\)

\(=\frac{1\times2\times3}{2\times3\times4}=\frac{1}{4}\)

3 tháng 3 2017

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=\frac{23}{16}\)

\(4x+\frac{15}{16}=\frac{23}{16}\)

\(4x=\frac{1}{2}\)

\(x=\frac{1}{8}\)

             Vậy \(x=\frac{1}{8}\)

3 tháng 3 2017

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+\left(x+\frac{1}{16}\right)=\frac{23}{16}\)

\(\Rightarrow\left(x+x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)=\frac{23}{16}\)

\(\Rightarrow5x+\frac{15}{32}=\frac{23}{16}\)

\(\Rightarrow5x=\frac{23}{16}-\frac{15}{32}\)

\(\Rightarrow5x=\frac{31}{32}\)

\(\Rightarrow x=\frac{31}{32}.\frac{1}{5}=\frac{31}{160}\)

20 tháng 7 2018

\(\left(2.8x-32\right):\frac{2}{3}=90\)

\(2.8\cdot x-32=90\cdot\frac{2}{3}\)

\(\frac{14}{5}x-32=60\)

\(\frac{14}{5}x=60+32\)

\(\frac{14}{5}x=92\)

\(x=\frac{230}{7}\)

B , c , d tương tự

Kết quả bằng 1/2016

12 tháng 3 2017

=1/2016 do

17 tháng 3 2016
2020/2015 nha bạn
17 tháng 3 2016

\(A=\frac{1+2+...+2014}{2015}\)

\(A=\frac{\frac{2014\cdot2015}{2}}{2015}\)

\(A=\frac{1007\cdot2015}{2015}\)

\(A=1007\)

28 tháng 8 2017

1    \(A=\left(1+\frac{1}{2}\right)\times\left(1+\frac{1}{3}\right)\times\left(1+\frac{1}{4}\right)\times.........\times\left(1+\frac{1}{2016}\right)\times\left(1+\frac{1}{2017}\right)\)

\(A=\frac{3}{2}\times\frac{4}{3}\times\frac{5}{4}\times......\times\frac{2016}{2017}\times\frac{2018}{2017}\)

\(A=\frac{2018}{2}=1009\)

\(B=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+.......+\frac{2}{43.45}\)

\(B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-......+\frac{1}{43}-\frac{1}{45}\)

\(B=\frac{1}{3}-\frac{1}{45}\)

\(B=\frac{14}{45}\)

2     \(\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{2018}\times\frac{2017}{47}\)

\(=\frac{2017}{2018}\times\frac{23}{47}+\frac{24}{47}\times\frac{2017}{2018}\)

\(=\frac{2017}{2018}\times\left(\frac{23}{47}+\frac{24}{47}\right)\)

\(=\frac{2017}{2018}\times1\)

=\(\frac{2017}{2018}\)

bạn nào xem giải thế có đúng ko

17 tháng 3 2016

= 1 + 2 + 3 + ... + 2014( 1007 số hạng)  / 2015  = ( 2014 + 1 ) . 1007 / 2015 = 2015 . 1007 / 2015 = 1007

23 tháng 5 2017

Ta có:

\(A=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{3999.4000}}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{3999}-\frac{1}{4000}}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{3}+...+\frac{1}{3999}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{4000}\right)}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{3999}+\frac{1}{4000}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2000}\right)}\)

\(=\frac{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}{\frac{1}{2001}+\frac{1}{2002}+...+\frac{1}{4000}}=1\)

Ta lại có: 

\(B=\frac{\left(17+1\right)\left(\frac{17}{2}+1\right)...\left(\frac{17}{19}+1\right)}{\left(1+\frac{19}{17}\right)\left(1+\frac{19}{16}\right)...\left(1+19\right)}\)

\(=\frac{\frac{18}{1}.\frac{19}{2}.\frac{20}{3}...\frac{36}{19}}{\frac{36}{17}.\frac{35}{16}.\frac{34}{15}...\frac{20}{1}}\)

\(=\frac{1.2.3...36}{1.2.3...36}=1\)

Từ đây ta suy ra được

\(A-B=1-1=0\)

23 tháng 5 2017

BAN  CO THE TINH RO BIEU THUC B KO?