Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\frac{3}{5}\right|=\left|x-\frac{7}{3}\right|\Rightarrow x+\frac{3}{5}=\left|x-\frac{7}{3}\right|\)
th1 : | x-7/3| =x-7/3 khi x>=7/3
x+3/5=x-7/3
0x=-44/15 ( vô lý)
=> pt vô nghiệm
th2 |x-7/3|=7/3-x khi x<=7/3
x+3/5=7/3-x
2x=26/15
x=13/15 ( tmđk)
x=13/15 là nghiệm của pt
\(\left|x-y\right|+\left|y+\frac{5}{17}\right|=0\)
\(\Leftrightarrow\left|x-y\right|=\left|y+\frac{5}{17}\right|=0\)
\(\Leftrightarrow x=y=-\frac{5}{17}\)
a) Ta có : (3x - 0.5) ( 2x + 2.5) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x-0,5=0\\2x+2,5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0,5\\2x=-2,5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{0,5}{3}=\frac{1}{6}\\x=-\frac{2,5}{2}=\frac{5}{4}\end{cases}}\)
a) |x + 1| > 0
|x + 1| + 5 > 5
\(\Rightarrow\) min A = 5 khi x = - 1
b) \(B=\frac{x^2+15}{x^2+3}=\frac{x^2+3+12}{x^2+3}=1+\frac{12}{x^2+3}\)
x2 > 0
x2 + 3 > 3
\(\frac{1}{x^2+3}\le\frac{1}{3}\)
\(\frac{12}{x^2+3}\le4\)
\(1+\frac{12}{x^2+3}\le5\)
\(\Rightarrow\) max B = 5 khi x = 0
\(\Leftrightarrow\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x4\right|=\frac{2\left|5x-2\right|+5\left|2x+5\right|}{10}\)
\(\Rightarrow\frac{2\left|5x-2\right|+5\left|2x+5\right|}{10}=0\)
=>x\(\in\){rỗng} x ko tồn tại với nghiệm số thực
\(\left|x+\frac{3}{5}\right|-\left|x-\frac{7}{3}\right|=0\)
\(\left|x+\frac{3}{5}\right|=\left|x-\frac{7}{3}\right|\)
\(\Rightarrow x+\frac{3}{5}=x-\frac{7}{3}\)(loại) hoặc \(x+\frac{3}{5}=-x+\frac{7}{3}\)
\(\Rightarrow2x=\frac{7}{3}+\frac{3}{5}\)
\(2x=\frac{44}{15}\)
\(x=\frac{22}{15}\)