Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+2015}{5}+\frac{x+2016}{4}=\frac{x+2017}{3}+\frac{x+2018}{2}\)
\(\Leftrightarrow\left(\frac{x+2015}{5}+1\right)+\left(\frac{x+2016}{4}+1\right)=\left(\frac{x+2017}{3}+1\right)+\left(\frac{x+2018}{2}+1\right)\)
\(\Leftrightarrow\frac{x+2020}{5}+\frac{x+2020}{4}-\frac{x+2020}{3}-\frac{x+2020}{2}=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{5}+\frac{1}{4}-\frac{1}{3}-\frac{1}{2}\right)=0\)
\(\Leftrightarrow x+2020=0\)vì \(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}+\frac{1}{2}\ne0\)
\(\Leftrightarrow x=-2020\)
\(\frac{3}{x-2}=\frac{-2}{\frac{1}{8}}\)
\(\Rightarrow\frac{3}{8}=-2\left(x-2\right)\)
\(\frac{3}{8}=-2x-\left(-4\right)\)
\(\frac{3}{8}=-2x+4\)
\(-2x=\frac{3}{8}-4=\frac{-29}{8}\)
\(x=\frac{-29}{8}.\frac{1}{-2}=\frac{29}{16}\)
\(\frac{3}{x-2}=-\frac{2}{\frac{1}{8}}\)
\(\Rightarrow\frac{3}{x-2}=\frac{\left(-2\right).8}{1}\)
\(\Rightarrow\frac{3}{x-2}=-16\)
\(\Rightarrow x-2=3:\left(-16\right)\)
\(\Rightarrow x-2=-\frac{3}{16}\)
\(\Rightarrow x=-\frac{3}{16}+2\)
\(\Rightarrow x=\frac{29}{16}\)
Ta có\(\frac{2^x+2^{x+1}+2^{x+2}}{7}=\frac{3^x+3^{x+1}+3^{x+2}}{13}\)
\(\Rightarrow\frac{2^x\left(1+2+2^2\right)}{7}=\frac{3^x\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{2^x\left(1+2+4\right)}{7}=\frac{3^x\left(1+3+9\right)}{13}\)
\(\Rightarrow\frac{2^x.7}{7}=\frac{3^x.13}{13}\)
\(\Rightarrow2^x=3^x\)
\(\Rightarrow x=0\)
\(\frac{5}{2}.x-\frac{1}{3}.x+2=\frac{3}{2}\)
\(\frac{5}{2}.x-\frac{1}{3}.x=\frac{3}{2}-2\)
\(\left(\frac{5}{2}-\frac{1}{3}\right).x=-\frac{1}{2}\)
\(\frac{13}{6}.x=-\frac{1}{2}\)
\(x=-\frac{1}{2}:\frac{13}{6}\)
\(x=-\frac{3}{13}\)
Ta có: \(\left|x+\frac{1}{2}\right|\ge0;\left|x+\frac{1}{6}\right|\ge0;\left|x+\frac{1}{12}\right|\ge0;...;\left|x+\frac{1}{110}\right|\ge0\)
=> VT \(\ge\)0
=>VP \(\ge\)0 => 11x \(\ge\)0 => x \(\ge\)0.
=> \(\left|x+\frac{1}{2}\right|=x+\frac{1}{2};\left|x+\frac{1}{6}\right|=x+\frac{1}{6};\left|x+\frac{1}{12}\right|=x+\frac{1}{12};...;\left|x+\frac{1}{110}\right|=x+\frac{1}{110}\)
Phương trình <=> \(x+\frac{1}{2}+x+\frac{1}{6}+x+\frac{1}{12}+...+x+\frac{1}{110}=11x\)
<=> \(\left(x+x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)=11x\)
<=> \(10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\right)=11x\)
<=> \(1-\frac{1}{11}=11x-10x\)
<=> \(\frac{10}{11}=x\)
<=> \(x=\frac{10}{11}\left(tm\right)\)
Bởi vì
\(\frac{1}{2}=\frac{1}{1.2};\frac{1}{6}=\frac{1}{2.3};...;\frac{1}{110}=\frac{1}{10.11}\)
nên từ \(\frac{1}{2}\)đến \(\frac{1}{110}\)chỉ có 10 số
nên chỉ có 10 x
\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+\left|x+\frac{1}{12}\right|+...+\left|x+\frac{1}{110}\right|=11x\)
Với mọi x ta có:
+) \(\left\{{}\begin{matrix}\left|x+\frac{1}{2}\right|\ge0\\\left|x+\frac{1}{6}\right|\ge0\\.........\\\left|x+\frac{1}{110}\right|\ge0\end{matrix}\right.\)
\(\Rightarrow\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|\ge0\) \(\forall x.\)
Mà \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{110}\right|=11x\)
\(\Rightarrow11x\ge0\)
\(\Rightarrow x\ge0.\)
Với \(x\ge0\) thì:
\(\left\{{}\begin{matrix}\left|x+\frac{1}{2}\right|=x+\frac{1}{2}\\\left|x+\frac{1}{6}\right|=x+\frac{1}{6}\\..........\\\left|x+\frac{1}{110}\right|=x+\frac{1}{110}\end{matrix}\right.\)
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{6}+...+x+\frac{1}{110}=11x\)
\(\Rightarrow11x+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}\right)=11x-11x\)
\(\Rightarrow\frac{1}{2}+\frac{1}{6}+...+\frac{1}{110}=0x\) (vô lí).
\(\Rightarrow x\in\varnothing.\)
Vậy không tồn tại giá trị của x thỏa mãn yêu cầu đề bài.
Chúc bạn học tốt!
mình sửa đề chút nhé + \(\left|x+\frac{1}{110}\right|=11x\)
C1: (x-1).4=3.2
=> (x-1).4=6
=> x-1 =6/4
=> x-1 =1,5
C2: 2(x-1)/4 = 3/4
=> 2(x-1) = 3
=> 2x-2 =3
=> 2x =3+2
=> 2x =5
=> x =2,5
ta có:\(\frac{x-1}{x+2}=\frac{x-2}{x+3}\Rightarrow\left(x-1\right)\times\left(x+3\right)=\left(x+2\right)\times\left(x-2\right)\)
\(\Rightarrow\) \(x^2-x+3x-3=x^2+2x-2x-4\)
\(\Rightarrow\) \(x^2+2x-3=x^2-4\)
\(\Rightarrow\) \(x^2-x^2+2x=3-4\)
\(\Rightarrow\) \(2x=-1\)
\(\Rightarrow x=-1:2\)
\(\Rightarrow x=\frac{-1}{2}\)