Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2x-3}{\left(7-6x\right)^2}+\frac{x-2}{\left(7-6x\right)^2}=\frac{6x-3}{\left(3x-5\right)^2}-\frac{12x-10}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\frac{2x-3+x-2}{\left(7-6x\right)^2}=\frac{6x-3-12x+10}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\frac{3x-5}{\left(7-6x\right)^2}=\frac{7-6x}{\left(3x-5\right)^2}\)
\(\Leftrightarrow\left(7-6x\right)^3=\left(3x-5\right)^3\)
\(\Leftrightarrow7-6x=3x-5\)
\(\Leftrightarrow7+5=3x+6x\)
\(\Leftrightarrow12=9x\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)
a) \(\frac{6x-5}{-7}=\frac{5x-3}{-5}\)
=> -5(6x - 5) = -7(5x - 3)
=> -30x + 25 = -35x + 21
=> -30x + 25 + 35x - 21 = 0
=> (-30x + 35x) + (25 - 21) = 0
=> 5x + 4 = 0
=> 5x = -4
=> x = -4/5
b) \(\frac{12-7x}{-13}=\frac{4-3x}{-5}\)
=> -5(12 - 7x) = -13(4 - 3x)
=> -60 + 35x = -52 + 39x
=> -60 + 35x + 52 - 39x = 0
=> (-60 + 52) + (35x - 39x) = 0
=> -8 - 4x = 0
=> -8 = 4x
=> x = -2
c) \(\frac{2x+4}{7}=\frac{4x-2}{15}\)
=> 15(2x + 4) = 7(4x - 2)
=> 30x + 60 = 28x - 14
=> 30x + 60 - 28x + 14 = 0
=> 2x + 74 = 0
=> 2x = -74
=> x = -37
a/ 2x - 10 - [3x - 14 - (4 - 5x) - 2x] = 2
=> 2x - 10 - (3x - 14 - 4 + 5x - 2x) = 2
=> 2x - 10 - 3x + 14 + 4 - 5x + 2x = 2
=> -4x + 6 = 0
=> -4x = -6
=> x = 3/2
b/ \(\left(\frac{1}{4}x-1\right)+\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+1\right)=4,5\)
\(\Rightarrow\frac{1}{4}x-1+\frac{5}{6}x-2-\frac{3}{8}x-1-\frac{9}{2}=0\)
\(\Rightarrow\frac{17}{24}x-\frac{17}{2}=0\)
\(\Rightarrow\frac{17}{24}x=\frac{17}{2}\)
\(\Rightarrow x=12\)
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
a) \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\Leftrightarrow\)\(\left(2x+3\right)\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)
\(\Leftrightarrow20x^2+4x+30x+6=20x^2+25x+8x+10\)
\(\Leftrightarrow20x^2-20x^2+4x+30x-25x-8x=10-6\)
\(\Leftrightarrow x=4\)
b) \(\frac{3x-1}{40-5x}=\frac{25-3x}{5x-34}\)
\(\Leftrightarrow\left(3x-1\right)\left(5x-34\right)=\left(40-5x\right)\left(25-3x\right)\)
\(\Leftrightarrow15x^2-102x-5x+34=1000-120x-125x+15x^2\)
\(\Leftrightarrow15x^2-15x^2-102x-5x+120x+125x=1000-34\)
\(\Leftrightarrow138x=966\)
\(\Leftrightarrow x=7\)
a ) \(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}\)
\(\left(2x+3\right).\left(10x+2\right)=\left(5x+2\right)\left(4x+5\right)\)
\(20x^2+4x+30x+6=20x^2+25x+8x+10\)
\(4x+30x-25x-8x=10-6\)
\(x=4\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x+3}{5x+2}=\frac{4x+5}{10x+2}=\frac{2.\left(2x+3\right)-\left(4x+5\right)}{2.\left(5x+2\right)-\left(10x+2\right)}=\frac{4x+6-4x-5}{10x+4-10x-2}=\frac{1}{2}\)
Suy ra:
\(\frac{2x+3}{5x+2}=\frac{1}{2}\Rightarrow2.\left(2x+3\right)=1.\left(5x+2\right)\Rightarrow4x+6=5x+2\)
\(\Rightarrow x=4\)
\(\Rightarrow\left(5x-2\right)\left(6x-2\right)=\left(3x+1\right).13\)
\(\Leftrightarrow30x^2-10x-12x+4=39x+13\)
\(\Leftrightarrow30x^2-61x-9=0\)