Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x biết: \(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}.\)
\(\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}\)
\(\Rightarrow\frac{x+1}{9}+\frac{x+4}{6}+\frac{x+5}{5}+3=\frac{x+2}{8}+\frac{x+3}{7}+\frac{x+6}{4}+3\)
\(\Rightarrow\left(\frac{x+1}{9}+1\right)+\left(\frac{x+4}{6}+1\right)+\left(\frac{x+5}{5}+1\right)=\left(\frac{x+2}{8}+1\right)\)\(+\left(\frac{x+3}{7}+1\right)+\left(\frac{x+6}{4}\right)\)
\(\Rightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Rightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}\right)=\left(x+10\right)\left(\frac{1}{8}+\frac{1}{7}+\frac{1}{4}\right)\)
\(\Rightarrow\left(x+10\right)\frac{43}{90}=\left(x+10\right)\frac{29}{56}\)
\(\Rightarrow x+10=0\)
\(\Rightarrow x=-10\)
cộng 3 vào cả hai vế nên phương trình vẫn bằng nhau
Ta có \(\frac{x+1}{9}+1+\frac{x+4}{6}+1+\frac{x+5}{5}+1=\frac{x+2}{8}+1+\frac{x+3}{7}+1+\frac{x+6}{4}+1\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}=\frac{x+10}{8}+\frac{x+10}{7}+\frac{x+10}{4}\)
\(\Leftrightarrow\frac{x+10}{9}+\frac{x+10}{6}+\frac{x+10}{5}-\frac{x+10}{8}-\frac{x+10}{7}-\frac{x+10}{4}=0\)
\(\Leftrightarrow\left(x+10\right)\left(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\right)=0\)
mà \(\frac{1}{9}+\frac{1}{6}+\frac{1}{5}-\frac{1}{8}-\frac{1}{7}-\frac{1}{6}\ne0\)
\(\Rightarrow x+10=0\)
\(\Leftrightarrow x=-10\)
Lời giải: Giải phương trình với tập xác định
Tập xác định của phương trình
\(x\in\infty-\infty\)
\(\frac{19x+67}{90}=\frac{15x+83}{56}\Rightarrow\left(19x=67\right)56=90\left(15x+83\right)\)
Kết quả : \(-13\)
kq đúng nhưng mk k biết mấy cái phương trình đó vì mk mới lớp 7
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
Ta có: \(\frac{x}{3}=\frac{y}{4}\)=> \(\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\) => \(\frac{y}{12}=\frac{z}{16}\)
=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\) => \(\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\)
=> \(\hept{\begin{cases}\frac{x}{9}=-1\\\frac{y}{12}=-1\\\frac{z}{16}=-1\end{cases}}\) => \(\hept{\begin{cases}x=-1.9=-9\\y=-1.12=-12\\z=-1.16=-16\end{cases}}\)
Vậy ...
\(\frac{x}{3}=\frac{y}{4}\Leftrightarrow x=\frac{3y}{4}\) ; \(\frac{y}{6}=\frac{z}{8}\Leftrightarrow z=\frac{8y}{6}\Leftrightarrow z=\frac{4y}{3}\)
Ta có: 3x - 2y - z = 13
\(\Leftrightarrow3\times\frac{3y}{4}-2y-\frac{4y}{3}=13\)
\(\Leftrightarrow-\frac{1}{2}y=13\)
\(\Leftrightarrow y=-26\). Từ đây ta dễ dàng tính x, y nhờ các công thức đã lập
Đây là phương pháp quy nhiều ẩn về 1 ẩn
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot......\cdot\frac{31}{64}=2^x\)
\(\Leftrightarrow\frac{1\cdot2\cdot3\cdot....\cdot31}{4\cdot6\cdot8\cdot....\cdot64}=2^x\)
\(\Leftrightarrow\frac{1\cdot2\cdot3\cdot....\cdot31}{\left(2\cdot2\right)\cdot\left(3\cdot2\right)\cdot\left(4\cdot2\right)\cdot.....\cdot\left(2\cdot32\right)}=2^x\)
\(\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{\left(2\cdot2\cdot2\cdot....\cdot2\right)\left(1\cdot2\cdot3\cdot.....\cdot31\right)\cdot32}=2^x\)
\(\Leftrightarrow\frac{1}{2^{31}.2^5}=2^x\)
\(\Leftrightarrow\frac{1}{2^{36}}=2^x\)
\(\Rightarrow x=-36\)
tìm x biết:
\(\left(\frac{1}{4}x-1\right)-\left(\frac{5}{6}x+2\right)-\left(1-\frac{5}{8}x\right)=3\)
\(\left(\frac{1}{4}x-1\right)-\left(\frac{5}{6}x+2\right)-\left(1-\frac{5}{8}x\right)=3\)
=> \(\frac{1}{4}x-1-\frac{5}{6}x-2-1+\frac{5}{8}x=3\)
=> \(\left(\frac{1}{4}x-\frac{5}{6}x+\frac{5}{8}x\right)+\left(-1-2-1\right)=3\)
=> \(\frac{1}{24}x-4=3\)
=> \(\frac{1}{24}x=7\)
=> \(x=7:\frac{1}{24}=7\cdot24=168\)
Vậy x = 168
Anh chỉ giải câu a thôi, câu b anh thấy nó bình thường mà.
Cộng vào mỗi phân số thêm 1 đơn vị được:
\(\frac{x+2013}{2009}+\frac{x+2013}{2010}=\frac{x+2013}{2011}+\frac{x+2013}{2012}\).
Tới đây tự làm tiếp nhá.
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
\(\frac{4-x}{6-x}=\frac{x-3}{x-8}\)(ĐKXĐ: \(x\ne6\)và \(x\ne8\))
\(\Rightarrow\left(x-8\right)\left(4-x\right)=\left(x-3\right)\left(6-x\right)\)
\(\Leftrightarrow4x-x^2-32+8x=6x-x^2-18+3x\)
\(\Leftrightarrow x-14=0\Leftrightarrow x=14\left(tmdkxd\right)\)
\(\frac{4-x}{6-x}=\frac{x-3}{x-8}\)
=> (4 - x) (x - 8) = (6 - x) (x - 3)
=> x (4 - x) - 8 (4 - x) = x (6 - x) - 3 (6 - x)
=> 4x - x2 - 32 + 8x = 6x - x2 - 18 + 3x
=> 4x - x2 + 8x - 6x + x2 - 3x = 32 - 18
=> 4x + 8x - 6x - 3x - x2 + x2 = 14
=> 3x = 14
=> x = \(\frac{14}{3}\)