Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{3}+\frac{1}{y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y}{3y}+\frac{3}{3y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y+3}{3y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y}{y}=\frac{\left(-1\right)-3}{6:3}\)
\(x-1=-2\)
\(x=\left(-2\right)+1\)
\(x=-1\)
\(\frac{x-1}{3}+\frac{1}{y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y}{3y}+\frac{3}{3y}=\frac{-1}{6}\)
\(\frac{\left(x-1\right)y+3}{3y}=\frac{-1}{6}\)
\(x-1=\frac{\left(-1\right)-3}{6:3}\)
\(x-1=-2\)
\(x=\left(-2\right)+1\)
\(x=-1\)
\(\frac{1}{4}+\frac{1}{3}:\left(2x-1\right)=-5\)
\(\frac{1}{3}:\left(2x-1\right)=-5-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{20}{4}-\frac{1}{4}\)
\(\frac{1}{3}:\left(2x-1\right)=-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}:-\frac{21}{4}\)
\(\left(2x-1\right)=\frac{1}{3}.-\frac{4}{21}\)
\(\left(2x-1\right)=-\frac{4}{63}\)
2x= -4/63 + 1
2x = 59/63
x = 59/63 : 2
x = 59/126
1/3:(2.x-1)=-5-1/4
1/3:(2.x-1)=-21/4
2.x-1=1/3:-21/4
2.x-1=-4/63
2.x=-4/63+1
2.x=\(3\frac{59}{63}\)
x=\(3\frac{59}{63}\):2
x=\(1\frac{61}{63}\)
\(\left(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{8\cdot9\cdot10}\right)x=\frac{22}{45}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{8\cdot9\cdot10}\right)x=\frac{22}{45}\)
\(\Rightarrow\frac{x}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\right)=\frac{22}{45}\)
\(\Rightarrow\frac{x}{2}\left(\frac{1}{2}-\frac{1}{90}\right)=\frac{22}{45}\)
\(\Rightarrow\frac{x}{2}\cdot\frac{22}{45}=\frac{22}{45}\)
\(\Rightarrow\frac{x}{2}=1\)
\(\Rightarrow x=2\)
Câu 1 tự làm nhé! Đưa về cùng số mũ mà so sánh
Câu 2 :
<=> x.2 + x.4 + x.8 +.......+ x.512 = 511
<=> x.( 2+4+8+....+512) = 29-1
<=> x. (210-2) = 29-1
<=> x = 29-1 / 210-2
<=> x = 29-1/2(29-1) = 1/2 = 0,5
=> x = 0,5 nhé!
Xx2 + Xx4 + Xx8 + ....+ Xx512 = 511
Xx(2 + 4 + 8 + ... + 512 ) = 511
Xx73 = 511
X = 511 :73
X = 7
mình ko chắc đúng đâu
a) ta có \(\frac{-5}{6}\)\(\times\)\(\frac{120}{25}\)< \(x\)<\(\frac{-7}{15}\)\(\times\)\(\frac{4}{9}\)\(\Rightarrow\)\(-4\)<\(x\)<\(-0,2074074074\)\(\Rightarrow\)\(-4\)<\(x\)<\(-0,2\)
mà \(x\)\(\in\)\(ℤ\)\(\Rightarrow\)\(x\)\(\in\)( -1;-2;-3)
b) ta có \(\left(\frac{-5}{3}\right)^3\)<\(x\)<\(\frac{-25}{35}\)\(\times\)\(\frac{-5}{6}\)\(\Rightarrow\)\(-4,62962963\)<\(x\)<\(0,5952380952\)
mà \(x\)\(\in\)\(ℤ\)\(\Rightarrow\)\(x\)\(\in\)(-4;-3;-2;-1;0)
ĐÚNG THÌ K CHO MK NHA
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}=\frac{2001}{2003}\)
\(\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)\div2}\right)=\frac{1}{2}\cdot\frac{2001}{2003}\)
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{x\left(x+1\right)}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{2001}{4006}\)
\(\frac{1}{x+1}=\frac{1}{2003}\)
\(\Rightarrow x+1=2003\)
\(x=2002\)
Vậy x = 2002
nhân cả 2 vế của đẳng thức với 1/2 ta được
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{x\left(x+1\right)}=\frac{2014}{2015}\)
\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}=\frac{2014}{2015}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-......+\frac{1}{x}-\frac{1}{x+1}=\frac{2014}{2015}\)
\(=\frac{1}{2}-\frac{1}{x+1}=\frac{2014}{2015}\)
\(=>\frac{1}{x+1}=\frac{1}{2}-\frac{2014}{2015}\)
\(\frac{1}{x+1}=-\frac{2013}{4030}\)
hay \(1:\left(x+1\right)=-\frac{2013}{4030}\)
\(x+1=-\frac{4030}{2013}\)
\(=>x=-\frac{6043}{2013}\)
\(\frac{-1}{x}=\frac{x-1}{6}\Leftrightarrow x\left(x-1\right)=-6\Leftrightarrow x^2-x=-6\Leftrightarrow x^2-x+\frac{1}{4}=-\frac{23}{4}< 0\)
\(Mà:x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\text{ vô lí}\)
\(Vậy:x\in\varnothing\)
\(-\frac{-1}{x}=\frac{x-1}{6}\left(x\ne0\right)\)
\(\Leftrightarrow\frac{1}{x}=\frac{x-1}{6}\)
\(\Leftrightarrow x\left(x-1\right)=1.6\)
\(\Leftrightarrow x^2-x=6\)
\(\Leftrightarrow x^2-x-6=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)