Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)
\(\Leftrightarrow\left(\dfrac{x+1}{100}+1\right)+\left(\dfrac{x+2}{99}+1\right)=\left(\dfrac{x+3}{98}+1\right)+\left(\dfrac{x+4}{97}+1\right)\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}=\dfrac{x+101}{98}+\dfrac{x+101}{97}\)
\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\)
\(\Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\)
Mà \(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\ne0\)
\(\Leftrightarrow x+101=0\)
\(\Leftrightarrow x=-101\)
Vậy...
b/ Đặt :
\(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+.........+\dfrac{19}{9^2.10^2}\)
\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+....+\dfrac{10^2-9^2}{9^2.10^2}\)
\(=\dfrac{2^2}{1^2.2^2}-\dfrac{1^2}{1^2.2^2}+\dfrac{3^2}{2^2.3^2}-\dfrac{2^2}{2^2.3^2}+....+\dfrac{10^2}{9^2.10^2}-\dfrac{9^2}{9^2.10^2}\)
\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)
\(=1-\dfrac{1}{10^2}< 1\)
\(\Leftrightarrow A< 1\left(đpcm\right)\)
Vậy...
c/ Với mọi x ta có :
\(\left|x-5\right|=\left|5-x\right|\)
\(\Leftrightarrow\left|x-10\right|+\left|x-5\right|=\left|x-10\right|+\left|5-x\right|\)
\(\Leftrightarrow A=\left|x-10\right|+\left|5-x\right|\)
\(\Leftrightarrow A\ge\left|x-10+5-x\right|\)
\(\Leftrightarrow A\ge5\)
Dấu "=" xảy ra
\(\Leftrightarrow\left(x-10\right)\left(5-x\right)\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-10\ge0\\5-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-10\le0\\5-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge10\\5\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le10\\5\le x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\5\le x\le10\end{matrix}\right.\)
Vậy..
a) Ta có: \(\left(4x-1\right)^2=\left(1-4x\right)^2\)
\(\Leftrightarrow\left(4x-1\right)^2-\left(1-4x\right)^2=0\)
\(\Leftrightarrow\left(4x-1-1+4x\right)\left(4x-1+1-4x\right)=0\)
\(\Leftrightarrow0\cdot x=0\)(luôn đúng)
Vậy: \(x\in R\)
b) Ta có: \(\dfrac{x-100}{24}+\dfrac{x-98}{26}+\dfrac{x-96}{28}=3\)
\(\Leftrightarrow\dfrac{x-100}{24}-1+\dfrac{x-98}{26}-1+\dfrac{x-96}{28}-1=0\)
\(\Leftrightarrow\dfrac{x-124}{24}+\dfrac{x-124}{26}+\dfrac{x-124}{28}=0\)
\(\Leftrightarrow\left(x-124\right)\cdot\left(\dfrac{1}{24}+\dfrac{1}{26}+\dfrac{1}{28}\right)=0\)
mà \(\dfrac{1}{24}+\dfrac{1}{16}+\dfrac{1}{28}>0\)
nên x-124=0
hay x=124
Vậy: x=124
Bài 1:
a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)
\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)
\(=\dfrac{1}{2}\)
c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)
\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)
\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)
\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)
a, \(\dfrac{3}{7}\)\(x\)- \(\dfrac{2}{3}\)\(x\) = \(\dfrac{10}{21}\)
(\(\dfrac{3}{7}\) - \(\dfrac{2}{3}\)) \(\times\) \(x\) = \(\dfrac{10}{21}\)
- \(\dfrac{5}{21}\) \(\times\) \(x\) = \(\dfrac{10}{21}\)
\(x\) = \(\dfrac{10}{21}\) : (-\(\dfrac{5}{21}\))
\(x\) = -2
b, \(\dfrac{7}{35}\) : (\(x-\dfrac{1}{3}\)) = - \(\dfrac{2}{25}\)
\(x\) - \(\dfrac{1}{3}\) = \(\dfrac{7}{35}\) : (- \(\dfrac{2}{25}\))
\(x\) - \(\dfrac{1}{3}\) = - \(\dfrac{5}{2}\)
\(x\) = - \(\dfrac{5}{2}\) + \(\dfrac{1}{3}\)
\(x\) = - \(\dfrac{13}{6}\)
c, 3.(\(x\) - \(\dfrac{1}{2}\)) - 5.(\(x\) + \(\dfrac{3}{5}\)) = - \(x\)+ \(\dfrac{1}{5}\)
3\(x\) - \(\dfrac{3}{2}\) - 5\(x\) - 3 = - \(x\) + \(\dfrac{1}{5}\)
- \(x\) + 5\(x\) - 3\(x\) = - \(\dfrac{3}{2}\) - 3 - \(\dfrac{1}{5}\)
\(x\) = - \(\dfrac{47}{10}\)
\(a,\dfrac{3}{7}x-\dfrac{2}{3}x=\dfrac{10}{21}\\ \Rightarrow x\left(\dfrac{3}{7}-\dfrac{2}{3}\right)=\dfrac{10}{21}\\ \Rightarrow x.-\dfrac{5}{21}=\dfrac{10}{21}\\ \Rightarrow x=-2\\ b,\dfrac{7}{35}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow\dfrac{1}{5}:\left(x-\dfrac{1}{3}\right)=-\dfrac{2}{25}\\ \Rightarrow x-\dfrac{1}{3}=-\dfrac{5}{2}\\ \Rightarrow x=-\dfrac{13}{6}\\ c,3.\left(x-\dfrac{1}{2}\right)-5.\left(x+\dfrac{3}{5}\right)=-x+\dfrac{1}{5}\\ \Rightarrow3x-\dfrac{3}{2}-5x+5=-x+\dfrac{1}{5}\)
\(\Rightarrow x\left(3-5\right)-\dfrac{3}{2}+5=-x+\dfrac{1}{5}\\ \Rightarrow-2x-\dfrac{13}{2}=-x+\dfrac{1}{5}\\ \Rightarrow-x-\dfrac{13}{5}=\dfrac{1}{5}\\ \Rightarrow x=\dfrac{1}{5}-\dfrac{13}{5}\\ \Rightarrow x=-\dfrac{12}{5}.\)
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
\(a,\dfrac{2}{3}x-\dfrac{2}{5}=\dfrac{1}{2}x-\dfrac{1}{3}\\ \Rightarrow\dfrac{2}{3}x-\dfrac{1}{2}x-\dfrac{2}{5}=-\dfrac{1}{3}\\ \Rightarrow x\left(\dfrac{2}{3}-\dfrac{1}{2}\right)-\dfrac{2}{5}=-\dfrac{1}{3}\\ \Rightarrow x\dfrac{1}{6}=-\dfrac{11}{15}\\ \Rightarrow x=-\dfrac{22}{5}\\ b,\dfrac{1}{3}x+\dfrac{2}{5}.\left(x+1\right)=0\\ \Rightarrow\dfrac{1}{3}x+\left(x+1\right)=-\dfrac{2}{5}\\ \Rightarrow\dfrac{1}{3}x=-\dfrac{2}{5}-\left(x+1\right)\\ \Rightarrow\dfrac{1}{3}x=-\dfrac{7}{5}-x\\ \Rightarrow\dfrac{1}{3}.2x=-\dfrac{7}{5}\\ \Rightarrow2x=-\dfrac{21}{5}\\ \Rightarrow x=-\dfrac{21}{10}.\)
a) 1/20 - (x - 8/5) = 1/10
x - 8/5 = 1/20 - 1/10
x - 8/5 = -1/20
x = -1/20 + 8/5
x = 31/20
b) 7/4 - (x + 5/3) = -12/5
x + 5/3 = 7/4 + 12/5
x + 5/3 = 83/20
x = 83/20 - 5/3
x = 149/60
c) x - [17/2 - (-3/7 + 5/3)] = -1/3
x - (17/2 - 26/21) = -1/3
x - 305/42 = -1/3
x = -1/3 + 305/42
x = 97/14
1,\(\dfrac{-1}{4}-\dfrac{3}{4}:x=-\dfrac{11}{36}\)
\(-\dfrac{3}{4}:x=\left(-\dfrac{1}{4}\right)-\left(-\dfrac{11}{36}\right)\)
\(-\dfrac{3}{4}:x=\dfrac{1}{18}\)
\(x=\left(-\dfrac{3}{4}\right):\left(\dfrac{1}{18}\right)\)
\(x=\dfrac{27}{2}\)
2, \(\dfrac{3}{4}x-\dfrac{1}{2}=\dfrac{3}{7}\)
\(\dfrac{3}{4}x=\dfrac{3}{7}+\dfrac{1}{2}\)
\(\dfrac{3}{4}x=\dfrac{13}{14}\)
\(x=\dfrac{13}{14}:\dfrac{3}{4}\)
\(x=\dfrac{26}{21}\)