Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{\dfrac{8}{2}-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)
a: \(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)
\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\)
\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)
b: \(M=1-\dfrac{5}{\sqrt{196}}-\dfrac{5}{\left(2\sqrt{21}\right)^2}-\dfrac{\sqrt{25}}{204}-\dfrac{\left(\sqrt{5}\right)^2}{374}\)
\(=1-\dfrac{5}{14}-\dfrac{5}{84}-\dfrac{5}{204}-\dfrac{5}{374}\)
\(=1-5\left(\dfrac{1}{14}+\dfrac{1}{84}+\dfrac{1}{204}+\dfrac{1}{374}\right)\)
\(=1-5\left(\dfrac{1}{2\cdot7}+\dfrac{1}{7\cdot12}+\dfrac{1}{12\cdot17}+\dfrac{1}{17\cdot22}\right)\)
\(=1-\left(\dfrac{5}{2\cdot7}+\dfrac{5}{7\cdot12}+\dfrac{5}{12\cdot17}+\dfrac{5}{17\cdot22}\right)\)
\(=1-\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}\right)\)
\(=1-\left(\dfrac{1}{2}-\dfrac{1}{22}\right)\)
\(=1-\dfrac{11-1}{22}=1-\dfrac{10}{22}=\dfrac{12}{22}=\dfrac{6}{11}\)
\(\Leftrightarrow\dfrac{1}{2}\left[\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\right]=\dfrac{49}{99}\\ \Leftrightarrow1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Leftrightarrow2x+1=99\Leftrightarrow x=49\)
\(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{9}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)
\(A=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{\left(7.7\right)^2}}{\dfrac{8}{2}-\dfrac{4}{9}+\dfrac{4}{49}-\dfrac{4}{343}}\)
\(A=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{2401}}{\dfrac{8}{2}-\dfrac{4}{9}+\dfrac{4}{49}-\dfrac{4}{343}}\)
\(A=\dfrac{\dfrac{6}{7}+\dfrac{1}{49}-\dfrac{1}{2401}}{\dfrac{32}{9}+\dfrac{4}{49}-\dfrac{4}{343}}\)
\(A=\dfrac{\dfrac{43}{49}-\dfrac{1}{2401}}{\dfrac{1604}{441}-\dfrac{4}{343}}\)
\(A=\dfrac{\dfrac{2106}{2401}}{3,625526401}\)
\(A=\dfrac{2106}{2401}:3,625526401\)
\(A=\dfrac{9477}{39172}\)
\(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\\ =\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\cdot\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)
\(A=\dfrac{\dfrac{7}{7}-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\)
\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)
a: \(\Leftrightarrow7^x\cdot49+7^x\cdot\dfrac{2}{7}=345\)
\(\Leftrightarrow7^x=7\)
hay x=1
c: \(\left(\dfrac{1}{3}-\dfrac{1}{2}\right)^{x-1}=\dfrac{1}{36}\)
\(\Leftrightarrow\left(-\dfrac{1}{6}\right)^{x-1}=\left(-\dfrac{1}{6}\right)^2\)
=>x-1=2
hay x=3
d: \(\dfrac{25}{5^x}=\dfrac{1}{125}\)
\(\Leftrightarrow5^x=5^2\cdot5^3=5^5\)
hay x=5
\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\frac{2^2}{7^2}-\frac{4}{343}}\)
\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{\frac{8}{2}-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(B=\frac{\frac{343}{343}-\frac{49}{343}+\frac{7}{343}-\frac{1}{343}}{4-\frac{4}{7}+\frac{28}{343}-\frac{4}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{28}{7}-\frac{4}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{24}{7}+\frac{24}{343}}\)
\(B=\frac{\frac{300}{343}}{\frac{1323}{343}+\frac{24}{343}}\)
\(B=\frac{300}{343}:\frac{1347}{343}\)
\(B=\frac{100}{449}\)
\(A=\frac{2^{12}.3^5-4^6.9^2}{\left(2^2.3\right)^6+8^4.3^5}-\frac{5^{10}.7^3-25^5.49^2}{\left(125.7\right)^3+5^9.14^3}\)
\(A=\frac{2^{12}.3^5-2^{12}.3^6}{2^{12}.3^6+2^{12}.3^5}-\frac{5^{10}.7^3-5^{10}.7^6}{5^9.7^3+5^9.2^3.7^3}\)
\(A=\frac{2^{12}.3^5\left(1-3\right)}{2^{12}.3^5.\left(3+1\right)}-\frac{5^{10}.7^3.\left(1-7^3\right)}{5^9.7^3.\left(1+8\right)}\)
\(A=\frac{-2}{4}-\frac{5.\left(-342\right)}{9}\)
\(A=\frac{-1}{2}+\frac{1710}{9}\)
\(A=\frac{-1}{2}+190\)
\(A=\frac{-1}{2}+\frac{380}{2}\)
\(A=\frac{379}{2}\)
\(\Leftrightarrow\left(-7\right)^{2x-1}=\left(-7\right)^3\cdot\left(-7\right)^2=\left(-7\right)^5\)
=>2x-1=5
=>2x=6
hay x=3