Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3x}{2.5}+\dfrac{3x}{5.8}+\dfrac{3x}{8.11}+\dfrac{3x}{11.14}=\dfrac{1}{21}\)
\(\Rightarrow x\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}\right)=\dfrac{1}{21}\)
\(\Rightarrow x\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)
\(\Rightarrow x\left(\dfrac{1}{2}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)
\(\Rightarrow x.\dfrac{3}{7}=\dfrac{1}{21}\)
\(\Rightarrow x=\dfrac{1}{21}.\dfrac{7}{3}\)
\(\Rightarrow x=\dfrac{1}{9}\)
Vậy \(x=\dfrac{1}{9}\)
a, dễ, tự làm
b, \(\dfrac{3x}{2.5}+\dfrac{3x}{5.8}+.........+\dfrac{3x}{11.14}=\dfrac{1}{21}\)
\(\Leftrightarrow x\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+.........+\dfrac{3}{11.14}\right)=\dfrac{1}{21}\)
\(\Leftrightarrow x\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+.....+\dfrac{1}{11}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)
\(\Leftrightarrow x\left(\dfrac{1}{2}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)
\(\Leftrightarrow x.\dfrac{3}{7}=\dfrac{1}{21}\)
\(\Leftrightarrow x=\dfrac{1}{9}\)
Vậy ...
a) (x-2)3 = (x-2)2
<=> (x-2)3-(x-2)2 = 0
<=> (x-2)2(x-2-1) = 0
<=> \(\left\{{}\begin{matrix}\left(x-2\right)^2=0\\x-3=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
b) \(\dfrac{3x}{2.5}+\dfrac{3x}{5.8}+...+\dfrac{3x}{11.14}=\dfrac{1}{21}\)
<=> \(x\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+...+\dfrac{3}{11.14}\right)=\dfrac{1}{21}\)
<=> \(x\left(\dfrac{1}{2}-\dfrac{1}{14}\right)=\dfrac{1}{21}\)
<=> \(x=\dfrac{1}{21}:\dfrac{3}{7}\)
<=> \(x=\dfrac{1}{9}\)
3x/2.5 + 3x/5.8+3x/8.11+3x/11.14 = 1/21
x(1/2-1/5+1/5-1/8+1/8-1/11+1/11-1/14) = 1/21
x(1/2-1/14) = 1/21
x . 3/7 = 1/21
=> x = 1/21 : 3/7
=> x = 1/9
Hihi mình giải zầy mk hk bik đúng hay sai
Ta có : \(\frac{3x}{2\times5}+\frac{3x}{5\times8}+\frac{3x}{8\times11}+\frac{3x}{11\times14}=\frac{1}{21}\)
\(\Rightarrow x\times\left(\frac{3}{2\times5}+\frac{3}{5\times8}+\frac{3}{8\times11}+\frac{3}{11\times14}\right)=\frac{1}{21}\)
\(\Rightarrow x\times\left(\frac{1}{2\times5}+\frac{1}{5\times8}+\frac{1}{8\times11}+\frac{1}{11\times14}\right)=\frac{1}{21}\)
\(x\times\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
\(x\times\left(\frac{1}{2}-\frac{1}{14}\right)\) \(=\frac{1}{21}\)
\(x\times\frac{3}{7}\) \(=\frac{1}{21}\)
\(x\) \(=\frac{1}{21}\div\frac{3}{7}=\frac{1}{21}\times\frac{7}{3}\)
\(\Rightarrow x=\frac{1}{9}\)
Ta có 3x/2.5+3x/5.8+3x/8.11+3x/11.14=1/21
=>x(3/2.5+3/5.8+3/8.11+3/11.14)=1/21
=>3x(1/2.5+1/5.8+1/8.11+1/11.14)=1/21
=>3x(1/2-1/14)=1/21
=>3x.3/7=1/21
=>3x=1/21:3/7
=>3x=1
=>x=1:3=1/3
\(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot17}\)
= \(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}\)
\(=\dfrac{1}{2}-\dfrac{1}{17}\)
\(=\dfrac{15}{34}\)
Vì \(\dfrac{15}{34}< \dfrac{1}{2}=>\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+\dfrac{3}{14\cdot27}< \dfrac{1}{2}\)
`(3x)/(2.5)+(3x)/(5.8)+(3x)/(8.11)+(3x)/(11.14)=1/21`
`=>x(3(2.5)+3/(5.8)+3/(8.11)+3/(11.14))=1/21`
`=>x(1/2-1/5+1/5-1/8+1/8-1/11-1/14)=1/21`
`=>x*(1/2-1/14)=1/21`
`=>x*3/7=1/21`
`=>x=1/21:3/7=1/9`
Vậy `x=1/9`
\(\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+\dfrac{1}{11\cdot14}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+\dfrac{3}{11\cdot14}+...+\dfrac{3}{x\left(x+3\right)}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\Leftrightarrow\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\Leftrightarrow\dfrac{1}{x+3}=\dfrac{1}{308}\)\(\Rightarrow x+3=308\Rightarrow x=305\)
Bài làm
\(\frac{3x}{2.5}+\frac{3x}{5.8}+\frac{3x}{8.11}+\frac{3x}{11.14}=\frac{1}{21}\)
\(\Leftrightarrow\frac{x}{2}-\frac{x}{5}+\frac{x}{5}-\frac{x}{8}+\frac{x}{8}-\frac{x}{11}+\frac{x}{11}-\frac{x}{14}=\frac{1}{21}\)
\(\Leftrightarrow\frac{x}{2}-\frac{x}{14}=\frac{1}{21}\)
\(\Leftrightarrow\frac{7x}{14}-\frac{x}{14}=\frac{1}{21}\)
\(\Leftrightarrow\frac{6x}{14}=\frac{1}{21}\)
\(\Leftrightarrow126x=14\)
\(\Leftrightarrow x=\frac{1}{9}\)
Học tôt
Ta có: \(\dfrac{k}{x.\left(x+k\right)}=\dfrac{x+k-x}{x.\left(x+k\right)}=\dfrac{1}{x}-\dfrac{1}{x+k}\)
nên áp dụng ta có:
\(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\)
\(=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\)
\(=\dfrac{1}{5}-\dfrac{1}{x+3}\)
Nên $\dfrac{1}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\right)=\dfrac{1}{3}.(\dfrac{1}{5}-\dfrac{1}{x+3})$
Đến đây là làm được rồi nha
\(x\) \((\)\(\dfrac{3}{2.5}\) \(+ \) \(\dfrac{3}{5.8}\) \(+\) \(\dfrac{3}{8.11}\) \(+\) \(\dfrac{3}{11.14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) \((\)\(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{5}\) \(+\) \(\dfrac{1}{5}\) \(-\) \(\dfrac{1}{8}\) \(+\) \(\dfrac{1}{8}\) \(-\) \(\dfrac{1}{11}\) \(+\) \(\dfrac{1}{11}\) \(-\) \(\dfrac{1}{14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) \((\)\(\dfrac{1}{2}\) \(-\) \(\dfrac{1}{14}\)\()\) \(=\) \(\dfrac{1}{21}\)
\(x\) x \(\dfrac{3}{7}\) \(=\) \(\dfrac{1}{21}\)
\(x\) \(=\) \(\dfrac{1}{21}\) \(:\) \(\dfrac{3}{7}\)
\(x\) \(=\) \(\dfrac{1}{9}\)