Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
b) \(x^2-3x+2=0\Leftrightarrow x^2-3x+\frac{9}{4}-\frac{1}{4}=0\)
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{1}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}=\sqrt{\frac{1}{4}}=\frac{1}{2}\\x-\frac{3}{2}=-\sqrt{\frac{1}{4}}=-\frac{1}{2}\end{cases}}\)
Giải tiếp nha
a) \(a^3+a^2b-a^2c-abc=a^2\left(a+b\right)-ac\left(a+b\right)=a\left(a+b\right)\left(a-c\right)\)
b) mk chỉnh lại đề
\(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
c) \(4-x^2-2xy-y^2=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\)
d) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
a) \(3x^2+2x-1=3x^2+3x-x-1=3x\left(x+1\right)-\left(x+1\right)=\left(x+1\right)\left(3x-1\right)\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\3x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}}\)
b) \(2x^2+7x-4=2x^2-x+8x-4=x\left(2x-1\right)+4\left(2x-1\right)=\left(2x-1\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-4\end{cases}}}\)
c) \(x^2-2x-24=x^2-2x+1-25=\left(x-1\right)^2-5^2=\left(x-1-5\right)\left(x-1+5=0\right)\)
\(\Rightarrow\orbr{\begin{cases}x-1-5=0\\x-1+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=6\\x=4\end{cases}}}\)
a,Cách 1 : \(x^2-10x+9=0\Leftrightarrow\left(x-1\right)\left(x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=9\end{cases}}\)
Cách 2 : Dung p^2 nhẩm nghiệm p^2 bậc 2 vì : 1 - 10 + 9 = 0
\(\Leftrightarrow\orbr{\begin{cases}x_1=1\\x_2=\frac{c}{a}=9\end{cases}}\)
b, Cách 1 : \(8x^2-2x-15=0\Leftrightarrow\left(4x+5\right)\left(2x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{4}\\x=\frac{3}{2}\end{cases}}\)
Cách 2 : \(\Delta=\left(-2\right)^2-4.8.\left(-15\right)=484>0\)
Pp có 2 nghiệm phân biệt : \(x_1=\frac{-2-\sqrt{484}}{16};x_2=\frac{-2+\sqrt{484}}{16}\)
toán 9 à bạn ?
c,\(2x^2+8x-7=0\)
Ta có : \(\Delta=8^2-4.\left(-7\right).2=64+56=120\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-8+\sqrt{120}}{4}=-2+\frac{\sqrt{120}}{4}\\x=\frac{-8-\sqrt{120}}{4}=-2-\frac{\sqrt{120}}{4}\end{cases}}\)
d,\(3x^2-15x+3=0\)
Ta có : \(\Delta=\left(-15\right)^2-4.3.3=225-36=189\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{15+\sqrt{189}}{6}\\x=\frac{15-\sqrt{189}}{6}\end{cases}}\)
e,\(16x^2-24x-4=0\Leftrightarrow4x^2-6x-1=0\)
Ta có : \(\Delta=\left(-6\right)^2-4.4.\left(-1\right)=36+16=52\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{6+\sqrt{52}}{8}\\x=\frac{6-\sqrt{52}}{8}\end{cases}}\)
f, \(-5x^2+6x+3=0\)
Ta có : \(\Delta=6^2-4.3.\left(-5\right)=36+60=96\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-6+\sqrt{96}}{-10}\\x=\frac{-6-\sqrt{96}}{-10}\end{cases}}\)
i, \(6x^2-9x+40=0\)
Ta có : \(\Delta=\left(-9\right)^2-4.6.40=81-960=-879\)
do đen ta < 0 => vô nghiệm
a) vì (x-2)2 có số mũ chẵn nên (x-2)2>=0 <1>
(2y+3)4có số mũ chẵn nên (2y+3)4=0 <2>
từ <1> và <2> suy ra :
(x-2)2=0 (2y+3)4=0
x-2=0 2y+3=0
x=2 2y=-3
y=-3/2
a ,( x2 -5 ) x ( x2 +9) x( -11-8x) =0
=> x2 -5 = 0 ; x2 + 9 = 0 hoặc -11-8 x =0 .
- => x2 = 5 ; x2 = -9 hoặc x = \(\frac{-11}{8}\)=> x = +\(\sqrt{5}\)và -\(\sqrt{5}\)hoặc x=\(\frac{-11}{8}\)
\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)
\(x^2+2x^2y^2+2y^2-x^2y^2-2x^2-2=0\)
\(x^2-2x^2+2x^2y^2-x^2y^2+2y^2-2=0\)
\(-x^2+2y^2-2=0\)
\(-x^2+2.y^2-2=0\)
\(\Rightarrow-x^2+2=0\) và \(y^2-2=0\)
TH1: \(-x^2+2=0\) tự tìm x tiếp rất đơn giản như tìm x bình thường
TH2:\(y^2-2=0\) tương tự như TH1 tự tìm x tiếp rất đơn giản như tìm x binhf thương
sẵn tiện kp nhé
Bỏ ngoặc ta được:
\(x^2+2.x^2y^2+2y^2-x^2y^2-2x^2-2=0\)
\(=x^2y^2-x^2+2y^2-2=0\)
\(=x^2\left(y^2-1\right)+2\left(y^2-1\right)-2=0\)
\(=\left(y^2-1\right)\left(x^2+2\right)=2\)
\(=>\left(y^2-1\right),\left(x^2+2\right)\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)
Rồi tự kẻ bảng ra nhé!