Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)
\(\Rightarrow A=\left(x^3+8\right)-\left(x^3-2\right)\)
\(\Rightarrow A=x^3+8-x^3+2\)
\(\Rightarrow A=\left(x^3-x^3\right)+\left(8+2\right)\)
\(\Rightarrow A=10\)
\(A=\left(x+2\right)\left(x^2-2x+4\right)-\left(x^3-2\right)\)
\(=x^3+8-x^3+2\)
\(=10\)
\(B=\left(x+2\right)\left(x-2\right)\left(x^2+2x+4\right)\left(x^2-2x+4\right)\)
\(=\left(x+2\right)\left(x^2-2x+4\right)\left(x-2\right)\left(x^2+2x+4\right)\)
\(=\left(x^3+8\right)\left(x^3-8\right)\)
\(=x^6-64\)
\(C=\left(x^2+3x+1\right)^2+\left(3x-1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)\)
\(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x+1-3x+1\right)^2\)
\(=\left(x^2+2\right)^2\)
\(D=\left(3x^3+3x+1\right)\left(3x^3-3x+1\right)-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1+3x\right)\left(3x^3+1-3x\right)-\left(3x^3+1\right)^2\)
\(=\left(3x^3+1\right)^2-9x^2-\left(3x^3+1\right)^2\)
\(=-9x^2\)
\(E=\left(2x^2+2x+1\right)\left(2x^2-2x+1\right)-\left(2x^2+1\right)^2\)
\(=\left(2x^2+1+2x\right)\left(2x^2+1-2x\right)-\left(2x^2+1\right)^2\)
\(=\left(2x^2+1\right)^2-4x^2-\left(2x^2+1\right)^2\)
\(=-4x^2\)
2)
a) \(3x^3-3x=0\)
\(\Leftrightarrow3x\left(x^2-1\right)=0\)
\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy x=0 ; x=-1 ; x=1
b) \(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)
1)
a) \(\left(x-2\right)\left(x^2+3x+4\right)\)
\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)
\(\Leftrightarrow x^3+x^2-2x-8\)
b) \(\left(x-2\right)\left(x-x^2+4\right)\)
\(=x^2-x^3+4x-2x+2x^2-8\)
\(=3x^2-x^3+2x-8\)
c) \(\left(x^2-1\right)\left(x^2+2x\right)\)
\(=x^4+2x^3-x^2-2x\)
d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)
\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)
\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)
\(=17x^2+5x-6-6x^3\)
a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)
\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)
=>-33x=34
hay x=-34/33
b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)
\(\Leftrightarrow2x^2=4\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: \(x^2-2\sqrt{3}x+3=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)
hay \(x=\sqrt{3}\)
d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
hay \(x=\sqrt{2}\)
Trả lời tội ghê đó bạn nhưng mk gửi một bài mà sao bạn trả lời một câu vậy bạn nhưng dù sao vẫn cảm on nha
a)(x+1)(x2+2x)=(x+1)x(x+2)=0
\(=>\left\{{}\begin{matrix}x+1=0=>x=-1\\x=0\\x+2=0=>x=-2\end{matrix}\right.\)
b)x(3x-2)-5(2-3x)=x(3x-2)+5(3x-2)=(3x-2)(x+5)=0
\(=>\left\{{}\begin{matrix}3x-2=0=>x=\dfrac{2}{3}\\x+5=0=>x=-5\end{matrix}\right.\)
c)\(\dfrac{4}{9}-25x^2=\left(\dfrac{2}{3}\right)^2-\left(5x\right)^2=\left(\dfrac{2}{3}-5x\right)\left(\dfrac{2}{3}+5x\right)\)
=0
\(=>\left\{{}\begin{matrix}\dfrac{2}{3}-5x=0=>x=\dfrac{2}{15}\\\dfrac{2}{3}+5x=0=>x=\dfrac{-2}{15}\end{matrix}\right.\)
d)\(x^2-x+\dfrac{1}{4}=x^2-2.\dfrac{1}{2}.x+\left(\dfrac{1}{2}\right)^2=\left(x-\dfrac{1}{2}\right)^2=0\)
\(=>x-\dfrac{1}{2}=0=>x=\dfrac{1}{2}\)
a) 5x-15y=5x-3.5.y=5(x-3y)
c) 14xy(xy+28x)
d) \(\dfrac{2}{7}\left(3x-1\right)\left(x-1\right)\)
e) (x-1)3
f) (x+y-2x)(x+y+2x)=(y-x)(3x+y)
g) (3x+\(\dfrac{1}{2}\))(9x2+\(\dfrac{3}{2}x\)+\(\dfrac{1}{4}\))
h) (x+y-x+y)\(\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)
2a)
(x+1)(x2+2x)=0
(x+1)x(x+2)=0
\(\left[{}\begin{matrix}x+1=0\\x=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\)
\(c.\:\left(3x+4\right)^2-\left(3x+1\right)\left(3x-1\right)\\ =9x^2+24x+16-9x^2+1\\ 40x=-1\\ x=-\dfrac{1}{40}\)
\(d.\:\left(3x-1\right)^2-\left(3x-2\right)^2=0\\ \left(3x-1+3x-2\right)\left(3x-1-3x+2\right)=0\\ \left(6x-3\right)=0\\ x=\dfrac{1}{2}\)
\(g.\:\left(2x+1\right)^2-\left(x-1\right)^2=0\\ \left(2x+1+x-1\right)\left(2x+1-x+1\right)=0\\ 3x\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
c,\(\left(3x+4\right)^2-\left(3x-1\right)\left(3x+1\right)=49\)
\(\Rightarrow9x^2+24x+16-\left(9x^2-1\right)=49\)
\(\Rightarrow9x^2+24x+16-9x^2+1=49\)
\(\Rightarrow24x=49-1-16\)
\(\Rightarrow24x=32\Rightarrow x=\dfrac{4}{3}\)
d, \(\left(3x-1\right)^2-\left(3x-2\right)^2=0\)
\(\Rightarrow\left(3x-1-3x+2\right).\left(3x-1+3x-2\right)=0\)
\(\Rightarrow6x-3=0\Rightarrow6x=3\Rightarrow x=\dfrac{1}{2}\)
e, \(\left(2x+1\right)^2-\left(x-1\right)^2=0\)
\(\Rightarrow\left(2x+1-x+1\right)\left(2x+1+x-1\right)=0\)
\(\Rightarrow\left(x+2\right).3x=0\Rightarrow x.\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Chúc bạn học tốt!!!