Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-3\right)^2-4=0\)
\(\left(x-3\right)^2=0+4\)
\(\left(x-3\right)^2=4\)
\(\left(x-3\right)^2=\pm4\)
\(\left(x-3\right)^2=\pm2^2\)
\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
\(4x^2+12x+9-4x^2+1=22\)
\(12x+10=22\)
\(12x=22-10\)
\(12x=12\)
\(x=1\)
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
\(16x^2-9-16x^2+40x-25=16\)
\(-34+40x=16\)
\(40x=16+34\)
\(40x=50\)
\(x=\frac{50}{40}=\frac{5}{4}\)
d) \(x^3-9x^2+27x-27=-8\)
\(x^3-9x^2+27x-27+8=0\)
\(x^3-9x^2+27x-19=0\)
\(\left(x^2-8x+19\right)\left(x-1\right)=0\)
Vì \(\left(x^2-8x+19\right)>0\) nên:
\(x-1=0\)
\(x=1\)
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)
\(3x+1=2\)
\(3x=2-1\)
\(3x=1\)
\(x=\frac{1}{3}\)
b) ( 2x+3)^2 - (2x+1)(2x-1) =22
=> 4x2+12x+9-4x2+1=22
=> 12x=12
=>x=1
c) (4x+3)(4x-3) -(4x-5)^2 =16
=>16x2-9-16x2+40x-25=16
=>40x=50
=>x=4/5
a)\(\left(x-13\right)^2-4=0\\\left(x-13\right)^2=4\\ \left(x-13\right)^2=2^2\\ \Rightarrow\left\{{}\begin{matrix}x-13=2\\x-13=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15\\-11\end{matrix}\right.\)
vậy...
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 - 22 = 0
<=> ( x - 3 - 2 )( x - 3 + 2 ) = 0
<=> ( x - 5 )( x - 1 ) = 0
<=> x = 5 hoặc x = 1
b( 2x + 3 )2 - ( 2x + 1 )( 2x - 1 ) = 22
<=> 4x2 + 12x + 9 - ( 4x2 - 1 ) = 22
<=> 4x2 + 12x + 9 - 4x2 + 1 = 22
<=> 12x + 10 = 22
<=> 12x = 12
<=> x = 1
c) ( 4x + 3 )( 4x - 3 ) - ( 4x - 5 )2 = 16
<=> 16x2 - 9 - ( 16x2 - 40x + 25 ) = 16
<=> 16x2 - 9 - 16x2 + 40x - 25 = 16
<=> 40x - 34 = 16
<=> 40x = 50
<=> x = 50/40 = 5/4
d) x3 - 9x2 + 27x - 27 = -8
<=> ( x - 3 )3 = -8
<=> ( x - 3 )3 = (-2)3
<=> x - 3 = -2
<=> x = 1
e) ( x + 1 )3 - x2( x + 3 ) = 2
<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2
<=> 3x + 1 = 2
<=> 3x = 1
<=> x = 1/3
f) ( x - 2 )3 - x( x - 1 )( x + 1 ) + 6x2 = 5
<=> x3 - 6x2 + 12x - 8 - x( x2 - 1 ) + 6x2 = 5
<=> x3 + 12x - 8 - x3 + x = 5
<=> 13x - 8 = 5
<=> 13x = 13
<=> x = 1
a) \(\left(x-3\right)^2-4=0\)
=> \(\left(x-3\right)^2-2^2=0\)
=> \(\left(x-3-2\right)\left(x-3+2\right)=0\)
=> \(\left(x-5\right)\left(x-1\right)=0\)
=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
=> \(\left(2x+3\right)^2-\left[\left(2x\right)^2-1^2\right]=22\)
=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)
=> \(\left(2x\right)^2+2\cdot2x\cdot3+3^2-4x^2+1=22\)
=> \(4x^2+12x+9-4x^2+1=22\)
=> \(12x+9+1=22\)
=> \(12x+10=22\)
=> 12x = 12
=> x = 1
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
=> \(\left(4x\right)^2-3^2-\left[\left(4x\right)^2-2\cdot4x\cdot5+5^2\right]=16\)
=> \(16x^2-9-\left(16x^2-40x+25\right)=16\)
=> \(16x^2-9-16x^2+40x-25=16\)
=> \(-9+40x-25=16\)
=> \(40x=16+25-\left(-9\right)=16+25+9=50\)
=> x = 50/40 = 5/4
d) \(x^3-9x^2+27x-27=-8\)
=> \(x^3-3\cdot x^2\cdot3+3\cdot x\cdot3^2-3^3=8\)
=> \(\left(x-3\right)^3=-8\)
=> \(\left(x-3\right)^3=\left(-2\right)^3\)
=> x - 3 = -2 => x = 1
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
=> \(x^3+3x^2+3x+1-x^3-3x^2=2\)
=> \(3x+1=2\)
=> \(3x=1\)=> x = 1/3
f) \(\left(x-2\right)^3-x\left(x-1\right)\left(x+1\right)+6x^2=5\)
=> \(x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3-x\left(x^2-1\right)+6x^2=5\)
=> \(x^3-6x^2+12x-8-x^3+x+6x^2=5\)
=> \(\left(12x+x\right)-8=5\)
=> 13x = 13
=> x = 1
1) \(\left(\dfrac{1}{2}x+3\right)\left(x^2-4x-6\right)\)
\(=\dfrac{1}{2}x^3-2x^2-3x+3x^2-12x-18\)
\(=\dfrac{1}{2}x^3+x^2-15x-18\)
2) \(\left(6x^2-9x+15\right)\left(\dfrac{2}{3}x+1\right)\)
\(=4x^3+6x^2-6x^2-9x+10x+15\)
\(=4x^3+x+15\)
3) Ta có: \(\left(3x^2-x+5\right)\left(x^3+5x-1\right)\)
\(=3x^5+15x^2-3x^2-x^4-5x^2+x+5x^3+25x-5\)
\(=3x^5-x^4+5x^3+10x^2+26x-5\)
4) Ta có: \(\left(x-1\right)\left(x+1\right)\left(x-2\right)\)
\(=\left(x^2-1\right)\left(x-2\right)\)
\(=x^3-2x^2-x+2\)
a) x3 - 9x2 + 27x - 27 = -8
<=> x3 - 3x2.3 + 3x.32 - 33 = -8
<=> (x - 3)3 = -23
<=> x - 3 = -2
<=> x = 1 (T/m)
Vậy x = 1.
b) 64x3 + 48x2 + 12x + 1 = 27
<=> (4x)3 + 3.(4x)2.1 + 3.4x.12 + 13 = 27
<=> (4x + 1)3 = 33
<=> 4x + 1 = 3
<=> 4x = 2
<=> x = \(\frac{1}{2}\)(T/m)
Vậy x = \(\frac{1}{2}\).
\(x^3-9x^2+27x-27=-8\Leftrightarrow\left(x^3-27\right)-\left(9x^2-27x\right)=\left(x-3\right)\left(x^2+3x+9\right)-9x\left(x-3\right)=\left(x-3\right)\left(x^2-6x+9\right)=\left(x-3\right)^3=-8=\left(-2\right)^3\Rightarrow x=\left(-2\right)+3=1\)
\(64x^3+48x^2+12x+1=\left(64x^3+1\right)+\left(48x^2+12x\right)=\left(4x+1\right)\left(16x^2-4x+1\right)+12x\left(4x+1\right)=\left(4x+1\right)\left(16x^2+8x+1\right)=\left(4x+1\right)^3=27\Rightarrow4x=2\Leftrightarrow x=\frac{1}{2}\)
c) \(\left(2x-1\right)^3-4x^2.\left(2x-3\right)=5\)
\(\Leftrightarrow\left(8x^3-12x^2+6x-1\right)-\left(8x^3-12x^2\right)=5\)
\(\Leftrightarrow8x^3-12x^2+6x-1-8x^3+12x^2=5\)
\(\Leftrightarrow6x-1=5\)
\(\Leftrightarrow6x=6\)
\(\Leftrightarrow x=1\)
d) \(\left(x+4\right)^3-x^2.\left(x+12\right)=16\)
\(\Leftrightarrow\left(x^3+12x^2+48x+64\right)-\left(x^3+12x^2\right)=16\)
\(\Leftrightarrow x^3+12x^2+48x+64-x^3-12x^2=16\)
\(\Leftrightarrow48x+64=16\)
\(\Leftrightarrow48x=-48\)
\(\Leftrightarrow x=-1\)
#vì câu a,b có người làm rồi nên mình chỉ làm c,d thôi nhé ! :)
Học Tốt !!
b) ( 2x + 3)2 – (2x + 1)(2x – 1) = 22
<=> 4x2 + 12x + 9 - 4x2 + 1 = 22
<=> 12x + 10 = 22
<=> 12x = 12
<=> x = 1
Vậy x = 1
c) (4x + 3)(4x – 3) – (4x - 5)2 = 16
<=> 16x2 - 9 - 16x2 + 40x - 25 = 16
<=> 40x - 34 = 16
<=> 40x = 50
<=> \(\frac{5}{4}\)
Vậy \(x=\frac{5}{4}\)
e) (x + 1)3 – x2(x + 3) = 2
<=> x3 + 3x2 + 3x + 1 - x3 - 3x2 = 2
<=> 3x + 1 = 2
<=> 3x = 2
<=> x = \(\frac{2}{3}\)
Vậy \(x=\frac{2}{3}\)
f) (x – 2)3 – x(x – 1)(x + 1) + 6x2 = 5
<=> x3 - 6x2 + 12x - 8 - x3 + x + 6x2 = 5
<=> 13x - 8 = 5
<=> 13x = 13
<=> x = 1
Vậy x = 1