\(a,x^3-13x=0\)

\(b,2-25x^2=0\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

c, \(\left(x-\dfrac{1}{2}\right)^2=0\)
<=>x-\(\dfrac{1}{2}\)=0
<=> x=\(\dfrac{1}{2}\)

a: =>x(x^2-13)=0

=>\(x\in\left\{0;\sqrt{13};-\sqrt{13}\right\}\)

b: =>25x^2=2

=>x^2=2/25

hay \(x=\pm\dfrac{\sqrt{2}}{5}\)

11 tháng 12 2018

\(a,x^3-13x=0\)

\(x.\left(x^2-13\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=13\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\sqrt{13}\end{cases}}}\)

\(b,2-25x^2=0\)

\(\Rightarrow25x^2=2\Rightarrow x^2=\frac{2}{25}\Rightarrow x=\sqrt{\frac{2}{25}}\)

\(c,x^2-x+\frac{1}{4}=0\)

\(\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)

11 tháng 12 2018

a, x 3 - 13 x = 0

=> x ( x 2 - 13 ) = 0

=> \(\orbr{\begin{cases}x=0\\x^2=13\end{cases}\Rightarrow[\begin{cases}x=0\\x=\sqrt{13}\\x=-\sqrt{13}\end{cases}}\)

b, 2 - 25 x 2 = 0

=> 25 x 2 = 2

=> x 2 = 0,08

=> \(\orbr{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=\frac{-\sqrt{2}}{5}\end{cases}}\)

x, x 2 - x + \(\frac{1}{4}\)= 0 

=> \(\left(x-\frac{1}{2}\right)^2=0\)

=> \(x-\frac{1}{2}=0\)

=> \(x=\frac{1}{2}\)

a) \(x^2-16=0\Rightarrow x^2=16\Rightarrow x^2=\pm4\)

b) \(4x^2-9=0\Rightarrow\left(2x-3\right)\left(2x+3\right)=0\Rightarrow x=\pm1,5\)

c) \(25x^2-1=0\Rightarrow\left(5x-1\right)\left(5x+1\right)=0\Rightarrow x=\pm0,2\)

d) \(4\left(x-1\right)^2-9=0\Rightarrow\left(2x-2-3\right)\left(2x-2+3\right)=0\Rightarrow\left[{}\begin{matrix}2x-5=0\Rightarrow x=2,5\\2x+1=0\Rightarrow x=-0,5\end{matrix}\right.\)

e) \(25x^2-\left(5x+1\right)^2=0\Rightarrow\left(5x+5x+1\right)\left(5x-5x-1\right)=0\Rightarrow10x+1=0\Rightarrow x=-0,1\)

f) \(\dfrac{1}{4}-9\left(x-1\right)^2=0\Rightarrow\left(\dfrac{1}{2}+3x-3\right)\left(\dfrac{1}{2}-3x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{6}\\x=\dfrac{7}{6}\end{matrix}\right.\)

g) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\Rightarrow\left(\dfrac{1}{4}+2x+\dfrac{3}{4}\right)\left(\dfrac{1}{4}-2x-\dfrac{3}{4}\right)=0\Rightarrow\left[{}\begin{matrix}x=-0,5\\x=-0,25\end{matrix}\right.\)

h) \(\dfrac{1}{9}x^2-\dfrac{2}{3}x+1=0\Rightarrow\left(\dfrac{1}{3}x-1\right)^2=0\Rightarrow\dfrac{1}{3}x=1\Rightarrow x=3\)

k) \(4\left(x-3\right)^2-\left(2-3x\right)^2=0\Rightarrow\left(2x-6+2-3x\right)\left(2x-6-2+3x\right)=0\Rightarrow\left[{}\begin{matrix}-x-4=0\Rightarrow x=-4\\5x-8=0\Rightarrow x=1,6\end{matrix}\right.\)

l) \(x^2-x-12=0\Rightarrow x^2-4x+3x-12=0\Rightarrow x\left(x-4\right)+3\left(x-4\right)=0\Rightarrow\left(x+3\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=-3\\x=4\end{matrix}\right.\)

13 tháng 9 2018

Cảm ơn bạn, ❤️

10 tháng 8 2018

a) \(x^4+x^2-2=0\)
\(\Leftrightarrow x^4+2x^2-x^2-2=0\)
\(\Leftrightarrow x^2\left(x^2+2\right)-\left(x^2+2\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow x^2+2=0\) hoặc \(x+1=0\) hoặc \(x-1=0\)
. \(x^2+2=0\Leftrightarrow x^2=-2\) (vô nghiệm)
.. \(x+1=0\Leftrightarrow x=-1\)
... \(x-1=0\Leftrightarrow x=1\)
Vậy \(S=\left\{\pm1\right\}\)

b) \(x^4-13x^2+36=0\)
\(\Leftrightarrow x^4-9x^2-4x^2+36=0\)
\(\Leftrightarrow x^2\left(x^2-9\right)-4\left(x^2-9\right)=0 \)
\(\Leftrightarrow\left(x^2-9\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-3\right)\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow x+3=0\) hoặc \(x-3=0\) hoặc \(x+2=0\) hoặc \(x-2=0\)
. \(x+3=0\Leftrightarrow x=-3\)
.. \(x-3=0\Leftrightarrow x=3\)
... \(x+2=0\Leftrightarrow x=-2\)
.... \(x-2=0\Leftrightarrow x=2\)

Vậy \(S=\left\{\pm3;\pm2\right\}\)
Câu C bạn ghi ko rõ lém!!!!!!!!

20 tháng 4 2017

Bài giải:

a) 2 – 25x2 = 0 => (√2)2 – (5x)2 = 0

=> (√2 – 5x)( √2 + 5x) = 0

Hoặc √2 – 5x = 0 => 5x = √2 => x = 2525

Hoặc √2 + 5x = 0 => 5x = -√2 => x = - 2525

b) x2 - x + 1414 = 0 => x2 – 2 . x . 1212 + (1212)2 = 0

=> (x - 1212)2 = 0 => x - 1212 = 0 => x = 12

23 tháng 9 2017

a) 2-25x2=0

<=>-25x2=-2

<=>25x2=2

<=>x2=\(\dfrac{2}{25}\)

<=>x=\(\sqrt{\dfrac{2}{25}}\)

b)x2-x +\(\dfrac{1}{4}\) =0

<=>(x - \(\dfrac{1}{2}\))2 = 0

<=> x-\(\dfrac{1}{2}\) =0

<=>x=\(\dfrac{1}{2}\)

15 tháng 7 2018

a) \(4.\left(x-1\right)^2-9=0\)

\(\Rightarrow4.\left(x-1\right)^2=9\)

\(\Rightarrow\left(x-1\right)^2=9:4=\dfrac{9}{4}=\left(\pm\dfrac{3}{2}\right)^2\)

\(\Rightarrow x-1=\pm\dfrac{3}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{3}{2}\\x-1=\dfrac{-3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

vậy\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

b) \(\dfrac{1}{4}-9.\left(x-1\right)^2=0\)

\(\Rightarrow9.\left(x-1\right)^2=\dfrac{1}{4}\)

\(\Rightarrow\left(x-1^2\right)=\dfrac{1}{36}=(\pm\dfrac{1}{6})^2\)

\(\Rightarrow x-1=\pm\dfrac{1}{6}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{6}\\x-1=\dfrac{-1}{6}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)

vậy \(\left[{}\begin{matrix}x=\dfrac{7}{6}\\x=\dfrac{5}{6}\end{matrix}\right.\)

15 tháng 7 2018

e) \(\dfrac{1}{16}-\left(2x+\dfrac{3}{4}\right)^2=0\)

\(\Rightarrow\left(2x+\dfrac{3}{4}\right)^2=\dfrac{1}{16}=\left(\pm\dfrac{1}{4}\right)^2\)

\(\Rightarrow2x+\dfrac{3}{4}=\pm\dfrac{1}{4}\)

\(\Rightarrow\)\(\left[{}\begin{matrix}2x+\dfrac{3}{4}=\dfrac{1}{4}\\2x+\dfrac{3}{4}=\dfrac{-1}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

vậy \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=\dfrac{-1}{2}\end{matrix}\right.\)

18 tháng 9 2020

           Bài làm :

\(a\text{)}3x^2+4x=0\Leftrightarrow x\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\3x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{4}{3}\end{cases}}\)

\(b\text{)}25x^2-0,64=0\Leftrightarrow\left(5x-0,8\right)\left(5x+0,8\right)=0\Leftrightarrow\orbr{\begin{cases}5x-0,8=0\\5x+0,8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,16\\-0,16\end{cases}}\)

\(c\text{)}x^4-16x^2=0\Leftrightarrow\left(x^2-4x\right)\left(x^2+4x\right)=0\Leftrightarrow\orbr{\begin{cases}x^2-4x=0\\x^2+4x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x-4\right)=0\\x\left(x+4\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)

\(d\text{)}x^2+x=6\Leftrightarrow x^2+x-6=0\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

Bài làm :

\(a)3x^2+4x=0\)

\(\Rightarrow x\left(3x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\3x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{-4}{3}\end{cases}}\)

Vậy x = 0 hoặc \(x=\frac{-4}{3}\) .

\(b)25x^2-0,64=0\)

\(\Rightarrow\left(5x\right)^2=\frac{16}{25}\)

\(\Rightarrow\left(5x\right)^2=\left(\frac{4}{5}\right)^2\)

\(\Rightarrow\orbr{\begin{cases}5x=\frac{4}{5}\\5x=\frac{-4}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{4}{25}\\x=\frac{-4}{25}\end{cases}}\)

Vậy \(x=\frac{4}{25}\) hoặc \(x=\frac{-4}{25}\) .

\(c)x^4-16x^2=0\)

\(\Rightarrow x^2\left(x^2-16\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^2=0\\x^2-16=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=4^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm4\end{cases}}\)

Vậy x = 0 hoặc \(x=\pm4\) .

3 tháng 7 2017

1. \(f\left(x\right)=25x^2-20x+\dfrac{9}{2}\)

=>\(f\left(x\right)=25x^2-20x+4+\dfrac{1}{2}\)

=> \(f\left(x\right)=(25x^2-20x+4)+\dfrac{1}{2}\)

=> \(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\)

Ta thấy: \((5x-2)^2\ge0\)

=>\(f\left(x\right)=(5x-2)^2+\dfrac{1}{2}\ge\dfrac{1}{2}>0\)(đpcm)

2. \(f\left(x\right)=4x^2-28x+50\)

=> \(f\left(x\right)=(4x^2-28x+49)+1\)

=> \(f\left(x\right)=(2x-7)^2+1\)

Ta thấy: \((2x-7)^2\ge0\)

=> \(f\left(x\right)=(2x-7)^2+1\ge1>0\) (đpcm)

3. \(f\left(x\right)=-16x^2+72x-82\)

=> \(f\left(x\right)=-(16x^2-72x+82)\)

=> \(f\left(x\right)=-(16x^2-72x+81+1)\)

=> \(f\left(x\right)=-[(4x-9)^2+1]\)

Ta thấy: \((4x-9)^2\ge0\)

=> \((4x-9)^2+1\ge1>0\)

=> \(f\left(x\right)=-[(4x-9)^2+1]< 0\)

5. \(f\left(x;y\right)=4x^2+9y^2-12x+6y+11\)

=> \(f\left(x;y\right)=4x^2+9y^2-12x+6y+9+1+1\)

=> \(f\left(x;y\right)=(4x^2-12x+9)+(9y^2+6y+1)+1\)

=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\)

Ta thấy: \((2x-3)^2\ge0\)

\((3y+1)^2\ge0\)

=> \(f\left(x;y\right)=(2x-3)^2+(3y+1)^2+1\) \(\ge1>0\) (đpcm)

10 tháng 8 2015

a)x3-13x=0

<=>x(x2-13)=0

<=>x=0 hoặc x2-13=0<=>x2=13<=>x=\(^+_-\sqrt{13}\)

b)2-25x2=0

<=>25x2=2

<=>x2=2/25

<=>x=\(^+_-\sqrt{\frac{2}{25}}\)

c)x2=x+1/4

<=>4x2=4x+1

<=>4x2-4x-1=0

<=>(4x2-4x+1)-2=0

<=>(2x-1)2=2

*)2x-1=\(\sqrt{2}\)

<=>2x=\(\sqrt{2}\)+1

<=>x=(\(\sqrt{2}\)+1)/2

*)2x-1=-\(\sqrt{2}\)

<=>2x=-\(\sqrt{2}\)+1

<=>x=(-\(\sqrt{2}\)+1)/2

d)(2x-1)2=(x+3)2

<=>(2x-1)2-(x+3)2=0

<=>(2x-1-x-3)(2x-1+x+3)=0

<=>(x-4)(3x+2)=0

<=>x-4=0 hoặc 3x+2=0

<=>x=4 hoặc x=-2/3