\(\sqrt{x^{2}-9}+\sqrt{x+3}=0\)

b)\(\s...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

a) \(2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\) (*)

đk: x >/ 0

(*) \(\Leftrightarrow2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)

\(\Leftrightarrow13\sqrt{2x}=28\) \(\Leftrightarrow\sqrt{2x}=\dfrac{28}{13}\Leftrightarrow2x=\left(\dfrac{28}{13}\right)^2\Leftrightarrow x=\dfrac{392}{169}\left(N\right)\)

Kl: \(x=\dfrac{392}{169}\)

b) \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\) (*)

đk: x >/ 5

(*) \(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\Leftrightarrow x-5=4\Leftrightarrow x=9\left(N\right)\)

Kl: x=9

c) \(\sqrt{\dfrac{3x-2}{x+1}}=2\) (*)

Đk: \(\left[{}\begin{matrix}x< -1\\x\ge\dfrac{2}{3}\end{matrix}\right.\)

(*) \(\Leftrightarrow\dfrac{3x-2}{x+1}=4\Leftrightarrow3x-2=4x+4\Leftrightarrow x=-6\left(N\right)\)

Kl: x=-6

d) \(\dfrac{\sqrt{5x-4}}{\sqrt{x+2}}=2\) (*)

Đk: \(x\ge\dfrac{4}{5}\)

(*) \(\Leftrightarrow\sqrt{5x-4}=2\sqrt{x+2}\Leftrightarrow5x-4=4x+8\Leftrightarrow x=12\left(N\right)\)

Kl: x=12

10 tháng 10 2019

a, Điều kiện x ∉ {\(\frac{5}{3};\frac{1}{7}\)}

\(\sqrt{3x-5}=\sqrt{7x-1}\)

\(\left(\sqrt{3x-5}\right)^2=\left(\sqrt{7x-1}\right)^2\)

\(\left|3x-5\right|=\left|7x-1\right|\)

\(3x-5=7x-1\)

\(-4x=4\) => x = -1

4 tháng 7 2019

Bài 2 xét x=0 => A =0

xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)

để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)

=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?

4 tháng 7 2019

1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)

=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)

\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)

\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)

=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

=> M=0

Vậy M=0 

21 tháng 8 2019
https://i.imgur.com/7Gi05HK.jpg
21 tháng 8 2019
https://i.imgur.com/lpCsO1V.jpg

Bài 1:

a) Ta có: \(\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

\(=\left(\sqrt{x}\right)^2-1^2\)

\(=x-1\)

b) Ta có: \(\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)

\(=\left(\sqrt{x}\right)^3+1^3\)

\(=x\sqrt{x}+1\)

c) Ta có: \(\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

\(=2x-2\sqrt{x}+\sqrt{x}-1\)

\(=2x-\sqrt{x}-1\)

Bài 2: Tìm x

a) Ta có: \(\sqrt{9x^2+6x+1}=3x-2\)

\(\Leftrightarrow\left|3x+1\right|=3x-2\)(*)

Trường hợp 1: \(x\ge\frac{-1}{3}\)

(*)\(\Leftrightarrow3x+1=3x-2\)

\(\Leftrightarrow3x+1-3x+2=0\)

\(\Leftrightarrow3=0\)(vô lý)

Trường hợp 2: \(x< \frac{-1}{3}\)

(*)\(\Leftrightarrow-3x-1=3x-2\)

\(\Leftrightarrow-3x-1-3x+2=0\)

\(\Leftrightarrow-6x+1=0\)

\(\Leftrightarrow-6x=-1\)

hay \(x=\frac{1}{6}\)(loại)

Vậy: \(S=\varnothing\)

b)Trường hợp 1: \(x\ge0\)

Ta có: \(\sqrt{x}-2>0\)

\(\Leftrightarrow\sqrt{x}>2\)

hay x>4(nhận)

Vậy: S={x|x>4}

29 tháng 7 2020

Cảm ơn ạ

14 tháng 8 2019

\(a,x-3\sqrt{x}+2\)

\(=x-3\sqrt{x}+\frac{9}{4}-\frac{1}{4}\)

\(=\left(x-\frac{3}{2}\right)^2-\left(\frac{1}{2}\right)^2=\left(x+2\right)\left(x-2\right)\)

14 tháng 8 2019

câu a mình nhìn nhầm :

\(=\left(x-1\right)\left(x+2\right)\)

6 tháng 9 2021

a)\(\frac{\sqrt[2]{X}+2}{\sqrt{x}-3}\)<  1 <=> \(\frac{\sqrt[2]{X}+2}{\sqrt{x}-3}\)- 1 < 0 <=> \(\frac{\sqrt{X}+2-\sqrt{x}+3}{\sqrt{x}-3}\)< 0 <=> \(\frac{5}{\sqrt{x}-3}\)< 0 Mà 5 > 0

=> \(\sqrt{x}-3< 0\)<=> \(\sqrt{X}< 3\)<=> \(x< 9\)

Câu b làm tương tự nha

6 tháng 9 2021

b, \(A=\frac{\sqrt{x}+2}{\sqrt{x}-3}\le2\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}-3}-2\le0\)

\(\Leftrightarrow\frac{\sqrt{x}+2-2\sqrt{x}+6}{\sqrt{x}-3}\le0\Leftrightarrow\frac{-\sqrt{x}+8}{\sqrt{x}-3}\le0\)

TH1 : \(\hept{\begin{cases}8-\sqrt{x}\le0\\\sqrt{x}-3\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-\sqrt{x}\le-8\\\sqrt{x}\ge3\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x}\ge8\\\sqrt{x}\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge64\\x\ge9\end{cases}\Leftrightarrow}x\ge64}\)

TH2 : \(\hept{\begin{cases}8-\sqrt{x}\ge0\\\sqrt{x}-3\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}\le8\\\sqrt{x}\le3\end{cases}\Leftrightarrow\hept{\begin{cases}x\le64\\x\le9\end{cases}}\Leftrightarrow x\le9}\)

Kết hợp với đk : \(0\le x< 9\)