K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ĐKXĐ: \(x\ge0\)

Ta có: \(\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\left(\sqrt{x}+6\right)=168x\)

\(\Leftrightarrow\left(x+6\right)^2+12\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)^2+19\sqrt{x}\left(x+6\right)-7\sqrt{x}\left(x+6\right)-133=0\)

\(\Leftrightarrow\left(x+6\right)\left(x+19\sqrt{x}+6\right)-7\sqrt{x}\left(x+19\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(x-7\sqrt{x}+6\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=36\end{matrix}\right.\)

30 tháng 7 2021

Dòng thứ 2 qua dòng thứ 3 anh làm chậm lại được không ạ, tại tắt quá e không hiểu

a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)

\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)

\(\Leftrightarrow3\sqrt{x+5}=6\)

\(\Leftrightarrow x+5=4\)

hay x=-1

b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)

\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

\(\Leftrightarrow\sqrt{x-1}=17\)

\(\Leftrightarrow x-1=289\)

hay x=290

c: \(\Leftrightarrow x-3=0\)

hay x=3

4 tháng 1 2022

c: ⇔x−3=0⇔x−3=0

hay x=3

13 tháng 7 2021

`a)sqrt{5x-2}=3(x>=2/5)`

`<=>5x-2=9`

`<=>5x=11`

`<=>x=11/5(tm)`

`b)sqrt{x^2-4x+4}-5=0`

`<=>\sqrt{(x-2)^2}=5`

`<=>|x-2|=5`

`<=>` \(\left[ \begin{array}{l}x-2=5\\x-2=-5\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=7\\x=-3\end{array} \right.\) 

`c)3sqrt{4x+8}-sqrt{9x+18}+9sqrt{(x+2)/9}=sqrt{72}(x>=-2)`

`<=>6sqrt{x+2}-3sqrt{x+2}+3sqrt{x+2}=sqrt{72}`

`<=>6sqrt{x+2}=6sqrt2`

`<=>sqrt{x+2}=sqrt2`

`<=>x+2=2`

`<=>x=0(tm)`

13 tháng 7 2021

\(a,ĐK:x\ge\dfrac{2}{5}\)

\(\Leftrightarrow5x-2=9\)

\(\Leftrightarrow5x=11\)

\(\Leftrightarrow x=\dfrac{11}{5}\)

\(b,\)

\(\Leftrightarrow x^2-5x+4=25\)

\(\Leftrightarrow x^2-5x-21=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5+\sqrt{109}}{2}\\x=\dfrac{5-\sqrt{109}}{2}\end{matrix}\right.\)

\(c,\)

\(\Leftrightarrow6\sqrt{x+2}-3\sqrt{x+2}+9\cdot\sqrt{\dfrac{x+2}{9}}=6\sqrt{2}\)

\(\Leftrightarrow2\sqrt{x+2}-\sqrt{x+2}+3\cdot\sqrt{\dfrac{x+2}{9}}=2\sqrt{2}\)

Đặt \(\sqrt{x+2}=a\) ta có (1)

\(2a-a+3\cdot\dfrac{a}{\sqrt{9}}=2\sqrt{2}\)

\(\Leftrightarrow a+3\cdot\dfrac{a}{3}=2\sqrt{2}\)

\(\Leftrightarrow2a=2\sqrt{2}\)

\(\Leftrightarrow a=\sqrt{2}\)

Thay \(a=\sqrt{2}\) vào (1) ta có

\(\sqrt{x+2}=\sqrt{2}\)

\(\Leftrightarrow x+2=2\)

\(\Leftrightarrow x=0\)

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

a. ĐKXĐ: $x\geq 0$

PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$

$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$

$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$

Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$

$\Leftrightarrow \sqrt{x}=\frac{12}{5}$

$\Leftrightarrow x=5,76$ (thỏa mãn)

 

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

b. ĐKXĐ: $x^2\geq 5$

PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$

$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$

$\Leftrightarrow \sqrt{x^2-5}=0$

$\Leftrightarrow x=\pm \sqrt{5}$

a: ĐKXĐ: x>=2/3

\(\dfrac{x-2}{\sqrt{3x-2}+2}=9\)

=>\(x-2=9\sqrt{3x-2}+18\)

=>\(9\sqrt{3x-2}=x-2-18=x-20\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}x>=20\\81\left(3x-2\right)=x^2-40x+400\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=20\\x^2-40x+400-243x+162=0\end{matrix}\right.\)

=>x>=20 và x^2-283x+562=0

=>x=281(nhận) hoặc x=2(loại)

b: ĐKXĐ: x>=2/5

\(\sqrt{5x-2}=9\)

=>5x-2=81

=>5x=83

=>x=83/5

c: ĐKXĐ: x>=-1; x<>8

\(\dfrac{2x-16}{\sqrt{x+1}-3}=5\)

=>\(2x-16=5\sqrt{x+1}-15\)

=>\(\sqrt{25x+25}=2x-16+15=2x-1\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\4x^2-4x+1=25x+25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{1}{2}\\4x^2-29x-24=0\end{matrix}\right.\)

=>x=8(nhận) hoặc x=-3/4(loại)

4 tháng 7 2020

1.a) \(\sqrt{x^2-4}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}.\left(\sqrt{x+2}-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\\sqrt{x+2}=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x+2=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)

Vậy x=2 hoặc x=-1

26 tháng 6 2021

`a)sqrt{x^2-2x+1}=2`

`<=>sqrt{(x-1)^2}=2`

`<=>|x-1|=2`

`**x-1=2<=>x=3`

`**x-1=-1<=>x=-1`.

Vậy `S={3,-1}`

`b)sqrt{x^2-1}=x`

Điều kiện:\(\begin{cases}x^2-1 \ge 0\\x \ge 0\\\end{cases}\)

`<=>` \(\begin{cases}x^2 \ge 1\\x \ge 0\\\end{cases}\)

`<=>x>=1`

`pt<=>x^2-1=x^2`

`<=>-1=0` vô lý

Vậy pt vô nghiệm

`c)sqrt{4x-20}+3sqrt{(x-5)/9}-1/3sqrt{9x-45}=4(x>=5)`

`pt<=>sqrt{4(x-5)}+sqrt{9*(x-5)/9}-sqrt{(9x-45)*1/9}=4`

`<=>2sqrt{x-5}+sqrt{x-5}-sqrt{x-5}=4`

`<=>2sqrt{x-5}=4`

`<=>sqrt{x-5}=2`

`<=>x-5=4`

`<=>x=9(tmđk)`

Vậy `S={9}.`

`d)x-5sqrt{x-2}=-2(x>=2)`

`<=>x-2-5sqrt{x-2}+4=0`

Đặt `a=sqrt{x-2}`

`pt<=>a^2-5a+4=0`

`<=>a_1=1,a_2=4`

`<=>sqrt{x-2}=1,sqrt{x-2}=4`

`<=>x_1=3,x_2=18`,

`e)2x-3sqrt{2x-1}-5=0`

`<=>2x-1-3sqrt{2x-1}-4=0`

Đặt `a=sqrt{2x-1}(a>=0)`

`pt<=>a^2-3a-4=0`

`a-b+c=0`

`<=>a_1=-1(l),a_2=4(tm)`

`<=>sqrt{2x-1}=4`

`<=>2x-1=16`

`<=>x=17/2(tm)`

Vậy `S={17/2}`

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

d.

ĐKXĐ: $x\geq 2$. Đặt $\sqrt{x-2}=a(a\geq 0)$ thì pt trở thành:

$a^2+2-5a=-2$

$\Leftrightarrow a^2-5a+4=0$

$\Leftrightarrow (a-1)(a-4)=0$

$\Rightarrow a=1$ hoặc $a=4$

$\Leftrightarrow \sqrt{x-2}=1$ hoặc $\sqrt{x-2}=4$

$\Leftrightarrow x=3$ hoặc $x=18$ (đều thỏa mãn)

e. ĐKXĐ: $x\geq \frac{1}{2}$

Đặt $\sqrt{2x-1}=a(a\geq 0)$ thì pt trở thành:

$a^2+1-3a-5=0$

$\Leftrightarrow a^2-3a-4=0$

$\Leftrightarrow (a+1)(a-4)=0$

Vì $a\geq 0$ nên $a=4$

$\Leftrightarrow \sqrt{2x-1}=4$

$\Leftrightarrow x=\frac{17}{2}$