Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu a:
|\(\sqrt2\) - \(x\)| = \(\sqrt2\)
\(\left[\begin{array}{l}\sqrt2-x=\sqrt2\\ \sqrt2-x=-\sqrt2\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=2\sqrt2\end{array}\right.\)
Vậy \(x\in\) {0; \(2\sqrt2\)}
Câu b:
|\(x-1\)| = \(\sqrt3\) + 2
\(\left[\begin{array}{l}x-1=\sqrt3+2\\ x-1=-\sqrt{3-2}\end{array}\right.\)
\(\left[\begin{array}{l}x=\sqrt3+2+1\\ x=-\sqrt3-2+1\end{array}\right.\)
\(\left[\begin{array}{l}x=\sqrt3+\left(2+1\right)\\ x=-\sqrt3-\left(2-1\right)\end{array}\right.\)
\(\left[\begin{array}{l}x=\sqrt3+3\\ x=-\sqrt3-1\end{array}\right.\)
Vậy \(x\in\) {- \(\sqrt3\) - 1; \(\sqrt3\) + 3}

a, => 3.(x-1).27.(x-1) = 8.2
=> 81.(x-1)^2 = 16
=> (x-1)^2 = 16/81
=> x-1=-4/9 hoặc x-1=4/9
=> x=5/9 hoặc x=13/9
b, => \(\sqrt{x}.\left(\sqrt{x}-3\right)\) = 0
=> \(\sqrt{x}=0\)hoặc \(\sqrt{x}-3=0\)
=> x=0 hoặc x=9
Tk mk nha

Lời giải:
a)
\(8\sqrt{x}=x^2\Leftrightarrow 8\sqrt{x}=\sqrt{x^4}\)
\(\Leftrightarrow \sqrt{x^4}-8\sqrt{x}=0\)
\(\Leftrightarrow \sqrt{x}(\sqrt{x^3}-8)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x^3}-8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(\sqrt{x}\right)^3=2^3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\) (đều thỏa mãn)
b)
Ta có: \(|5x-3|=|x-7|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=x-7\\5x-3=7-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=-4\\6x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{3}\end{matrix}\right.\)

a) \(\sqrt{16}x+\frac{3}{4}=2\sqrt{\frac{4}{25}}+0,01.\sqrt{100}\)
=> \(4x+\frac{3}{4}=2\cdot\frac{2}{5}+0,01\cdot10\)
=> \(4x+\frac{3}{4}=\frac{4}{5}+0,1\)
=> \(4x+\frac{3}{4}=0,9\)
=> \(4x=0,9-\frac{3}{4}\)
=> \(4x=0,15\)
=> \(x=0,15:4=0,0375\)
b) \(\left(x-\frac{2}{5}\right)\left(x+\frac{3}{7}\right)=0\)
=> \(\orbr{\begin{cases}x-\frac{2}{5}=0\\x+\frac{3}{7}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{2}{5}\\x=-\frac{3}{7}\end{cases}}\)

1) \(\frac{1}{3}x-\frac{2}{5}=\frac{1}{3}\)
⇒ \(\frac{1}{3}x=\frac{1}{3}+\frac{2}{5}\)
⇒ \(\frac{1}{3}x=\frac{11}{15}\)
⇒ \(x=\frac{11}{15}:\frac{1}{3}\)
⇒ \(x=\frac{11}{5}\)
Vậy \(x=\frac{11}{5}.\)
2) \(2,5:7,5=x:\frac{3}{5}\)
⇒ \(\frac{5}{2}:\frac{15}{2}=x:\frac{3}{5}\)
⇒ \(\frac{1}{3}=x:\frac{3}{5}\)
⇒ \(x=\frac{1}{3}.\frac{3}{5}\)
⇒ \(x=\frac{1}{5}\)
Vậy \(x=\frac{1}{5}.\)
4) \(\left|x\right|+\left|x+2\right|=0\)
Có: \(\left\{{}\begin{matrix}\left|x\right|\ge0\\\left|x+2\right|\ge0\end{matrix}\right.\forall x.\)
⇒ \(\left|x\right|+\left|x+2\right|=0\)
⇒ \(\left\{{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=0-2\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vô lí vì \(x\) không thể nhận cùng lúc 2 giá trị khác nhau.
⇒ \(x\in\varnothing\)
Vậy không tồn tại giá trị nào của \(x\) thỏa mãn yêu cầu đề bài.
10) \(5-\left|1-2x\right|=3\)
⇒ \(\left|1-2x\right|=5-3\)
⇒ \(\left|1-2x\right|=2\)
⇒ \(\left[{}\begin{matrix}1-2x=2\\1-2x=-2\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x=1-2=-1\\2x=1+2=3\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\left(-1\right):2\\x=3:2\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}x=-\frac{1}{2}\\x=\frac{3}{2}\end{matrix}\right.\)
Vậy \(x\in\left\{-\frac{1}{2};\frac{3}{2}\right\}.\)
Chúc bạn học tốt!
9, \(13\frac{1}{3}:1\frac{1}{3}=26:\left(2x-1\right)\)
\(\frac{40}{3}:\frac{4}{3}=26:\left(2x-1\right)\)
\(10=26:\left(2x-1\right)\)
\(2x-1=26:10\)
\(2x-1=2,6\)
\(2x=2,6+1\)
\(2x=3,6\)
\(x=3,6:2\)
\(x=1,8\)

1. a) x^2=16=>x=+_4
b)x^2=36=>x=+_6
c)x^2=49=>x=+_7
d) x-1=+_5
+) x-1=5
=>x=6
+)x-1=-5
=>x=-4
e) (x+3)^2=-1( vô lý)
ko cs gtri của x
f) (2x+7)^2=36=>2x+7=+_6
+) 2x+7=6
x=-1/2
+) 2x+7=-6
=>x=-13/2

a) \(x^2-2=0\)
\(\Rightarrow x^2-\left(\sqrt{2}\right)^2=0\)
\(\Rightarrow\left(x-\sqrt{2}\right).\left(x+\sqrt{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\x+\sqrt{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+\sqrt{2}\\x=0-\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}.\)
b) \(x^2+\frac{7}{4}=\frac{23}{4}\)
\(\Rightarrow x^2=\frac{23}{4}-\frac{7}{4}\)
\(\Rightarrow x^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy \(x\in\left\{2;-2\right\}.\)
c) \(\left(x-1\right)^2=0\)
\(\Rightarrow\left(x-1\right)^2=0^2\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=0+1\)
\(\Rightarrow x=1\)
Vậy \(x=1.\)
g) \(\sqrt{x}=0\)
\(\Rightarrow x=0\)
Vậy \(x=0.\)
h) \(\sqrt{x}=4\)
\(\Rightarrow\sqrt{x}=\left(\sqrt{4}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{16}\)
\(\Rightarrow x=16\)
Vậy \(x=16.\)
i) \(\sqrt{x}-\frac{1}{7}=0\)
\(\Rightarrow\sqrt{x}=0+\frac{1}{7}\)
\(\Rightarrow\sqrt{x}=\frac{1}{7}\)
\(\Rightarrow\sqrt{x}=\left(\sqrt{\frac{1}{7}}\right)^2\)
\(\Rightarrow\sqrt{x}=\sqrt{\frac{1}{49}}\)
\(\Rightarrow x=\frac{1}{49}\)
Vậy \(x=\frac{1}{49}.\)
Chúc bạn học tốt!
a)\(\left(x-1\right)^3=-8\Leftrightarrow\left(x-1\right)^3=\left(-2\right)^3\Leftrightarrow x-1=-2\Leftrightarrow x=-2+1=-1\)
b)\(x-3\sqrt{x}=0\Rightarrow x=3.\sqrt{x}\Rightarrow x^2=\left(3\sqrt{x}\right)^2\Leftrightarrow x^2=9x\Leftrightarrow x^2-9x=0\Leftrightarrow x.\left(x-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=9\end{cases}}\) vậy với x=0 hoặc x=9 thì...
a) \(\left(x-1\right)^3=-8\)
\(\Rightarrow\left(x-1\right)^3=\left(-2\right)^3\)
\(\Rightarrow x-1=-2\)
\(\Rightarrow x=-2+1\)
\(\Rightarrow x=-1\)
Vậy x=-1