Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm tiếp nè :
2) / 2x + 4/ = 2x - 5
Do : / 2x + 4 / ≥ 0 ∀x
⇒ 2x - 5 ≥ 0
⇔ x ≥ \(\dfrac{5}{2}\)
Bình phương hai vế của phương trình , ta có :
( 2x + 4)2 = ( 2x - 5)2
⇔ ( 2x + 4)2 - ( 2x - 5)2 = 0
⇔ ( 2x + 4 - 2x + 5)( 2x + 4 + 2x - 5) = 0
⇔ 9( 4x - 1) = 0
⇔ x = \(\dfrac{1}{4}\) ( KTM)
Vậy , phương trình vô nghiệm .
3) / x + 3/ = 3x - 1
Do : / x + 3 / ≥ 0 ∀x
⇒ 3x - 1 ≥ 0
⇔ x ≥ \(\dfrac{1}{3}\)
Bình phương hai vế của phương trình , ta có :
( x + 3)2 = ( 3x - 1)2
⇔ ( x + 3)2 - ( 3x - 1)2 = 0
⇔ ( x + 3 - 3x + 1)( x + 3 + 3x - 1) = 0
⇔ ( 4 - 2x)( 4x + 2) = 0
⇔ x = 2 (TM) hoặc x = \(\dfrac{-1}{2}\) ( KTM)
KL......
4) / x - 4/ + 3x = 5
⇔ / x - 4/ = 5 - 3x
Do : / x - 4/ ≥ 0 ∀x
⇒ 5 - 3x ≥ 0
⇔ x ≤ \(\dfrac{-5}{3}\)
Bình phương cả hai vế của phương trình , ta có :
( x - 4)2 = ( 5 - 3x)2
⇔ ( x - 4)2 - ( 5 - 3x)2 = 0
⇔ ( x - 4 - 5 + 3x)( x - 4 + 5 - 3x) = 0
⇔ ( 4x - 9)( 1 - 2x) = 0
⇔ x = \(\dfrac{9}{4}\) ( KTM) hoặc x = \(\dfrac{1}{2}\) ( KTM)
KL......
Làm tương tự với các phần khác nha
1)\(\left|4x\right|=3x+12\)
\(\Leftrightarrow4.\left|x\right|=3x+12\\ \Leftrightarrow4.\left|x\right|-3x=12\)
\(TH1:4x-3x=12\left(x\ge0\right)\\\Leftrightarrow x=12\left(TM\right) \)
\(TH2:4.\left(-x\right)-3x=12\left(x< 0\right)\\ \Leftrightarrow-7x=12\\ \Leftrightarrow x=-\dfrac{12}{7}\left(TM\right)\)
Vậy tập nghiệm của PT: \(S=\left\{12;-\dfrac{12}{7}\right\}\)
1: Ta có: |2x-3|=|x+5|
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x+5\\2x-3=-x-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-3-x-5=0\\2x-3+x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\frac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{8;\frac{-2}{3}\right\}\)
2: Ta có: |4-2x|=|3x|
\(\Leftrightarrow\left[{}\begin{matrix}4-2x=3x\\4-2x=-3x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4-2x-3x=0\\4-2x+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-5x+4=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-5x=-4\\x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{4}{5}\\x=-4\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{4}{5};-4\right\}\)
3: Ta có: |4x-5|-|2x+1|=0
\(\Leftrightarrow\left|4x-5\right|=\left|2x+1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-5=2x+1\\4x-5=-2x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x-5-2x-1=0\\4x-5+2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\6x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{3;\frac{2}{3}\right\}\)
4: Ta có: \(\left|0.5x-2\right|-\left|x+\frac{2}{3}\right|=0\)
\(\Leftrightarrow\left|0.5x-2\right|=\left|x+\frac{2}{3}\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x-2=x+\frac{2}{3}\\\frac{1}{2}x-2=-x-\frac{2}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}x-2-x-\frac{2}{3}=0\\\frac{1}{2}x-2+x+\frac{2}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{-1}{2}x-\frac{8}{3}=0\\\frac{3}{2}x-\frac{4}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{-1}{2}x=\frac{8}{3}\\\frac{3}{2}x=\frac{4}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{8}{3}:\frac{-1}{2}=\frac{8}{3}\cdot\left(-2\right)=\frac{-16}{3}\\x=\frac{4}{3}:\frac{3}{2}=\frac{4}{3}\cdot\frac{2}{3}=\frac{8}{9}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{-16}{3};\frac{8}{9}\right\}\)
1: Trường hợp 1: x>=0
Pt trở thành x+x=2
hay x=1(nhận)
Trường hợp 2: x<0
Pt trở thành -x+x=2
=>0x=2(loại)
2: Trường hợp 1: x>=1
Pt trở thành x-1+x=2
=>2x=3
hay x=3/2(nhận)
Trường hợp 2: x<1
Pt trở thành 1-x+x=2
=>1=2(loại)
a) Ta có \(|5\left(2x+3\right)\ge0\)
\(|2\left(2x+3\right)|\ge0\)
\(|2x+3|\ge0\)
\(\Rightarrow|5\left(2x+3\right)|+|\left(2x+3\right)|+|2x+3|\ge0\)
\(\Rightarrow5\left(2x+3\right)+2\left(2x+3\right)+2x+3=16\)
\(\Rightarrow10x+15+4x+6+2x+3=16\)
\(\Rightarrow\left(10x+4x+2x\right)+\left(15+6+3\right)=16\)
\(\Rightarrow16x+24=16\)
\(\Rightarrow24=16x-16\)
\(\Rightarrow24=x\)
Vậy x=24