K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2017

a)

\(2009-\left|x-2009\right|=x\)

\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)

\(\Rightarrow x-2009\le0\)

\(\Rightarrow x\le2009\)

Vậy \(x\le2009\)

b)

Vì \(\left(2x+1\right)^{2008}\ge0\forall x\)

\(\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\)

\(\left|x+y-z\right|\ge0\forall x,y,z\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)

Mà theo đề bài :

\(\left(2x+1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)

\(\Rightarrow\left(2x+1\right)^{2008}=0;\left(y-\dfrac{2}{5}\right)^{2008}=0;\left|x+y-z\right|=0\)

*) Với \(\left(2x+1\right)^{2008}=0\)

\(\Rightarrow2x+1=0\)

\(\Rightarrow2x=-1\)

\(\Rightarrow x=\dfrac{-1}{2}\)

*) Với \(\left(y-\dfrac{2}{5}\right)^{2008}=0\)

\(\Rightarrow y-\dfrac{2}{5}=0\)

\(\Rightarrow y=\dfrac{2}{5}\)

*) Với \(\left|x+y-z\right|=0\)

\(\Rightarrow x+y-z=0\)

\(\Rightarrow\dfrac{-1}{2}+\dfrac{2}{5}-z=0\)

\(\Rightarrow\dfrac{-1}{10}-z=0\)

\(\Rightarrow z=\dfrac{-1}{10}\)

Vậy \(x=\dfrac{-1}{2};y=\dfrac{2}{5};z=\dfrac{-1}{10}\)

20 tháng 10 2017

a, 2009 - \(\left|x-2009\right|\) = x

=> \(\left|x-2009\right|\) = 2009 - x

=> \(\left[{}\begin{matrix}x-2009=2009-x\\x-2009=-2009-x\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}2x=4018\\2x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2009\\x=0\end{matrix}\right.\)

Vậy x \(\in\)n { 2009 ; 0 }

8 tháng 4 2017

1. a) \(2009-\left|x-2009\right|=x\)

\(\Rightarrow\left|x-2009\right|=2009-x\)

\(\Rightarrow\left|x-2009\right|=-\left(x-2009\right)\)

\(\Rightarrow x-2009\le0\)

\(\Rightarrow x\le2009\)

Vậy \(x\le2009.\)

b) Ta có: \(\left[{}\begin{matrix}\left(2x-1\right)^{2008}\ge0\forall x\\\left(y-\dfrac{2}{5}\right)^{2008}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x,y,z\end{matrix}\right.\) \(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\forall x,y,z\)

Dấu \("="\) xảy ra khi \(\left[{}\begin{matrix}\left(2x-1\right)^{2008}=0\\\left(y-\dfrac{2}{5}\right)^{2008}=0\\\left|x+y-z\right|=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=\dfrac{9}{10}\end{matrix}\right.\).

8 tháng 4 2017

Bạn kia làm câu 1 rồi thì mình làm câu 2 nhé!

2. Ta có:\(\dfrac{3a-2b}{5}=\dfrac{2c-5a}{3}=\dfrac{5b-3c}{2}\)

\(\Rightarrow\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{5b-3c}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{15a-10b}{25}=\dfrac{6c-15a}{9}=\dfrac{15a-10b+6c-15a}{25+9}\)=\(\dfrac{-10b+6c}{34}=\dfrac{-5b+3c}{17}\)

\(\Rightarrow\dfrac{-5b+3c}{17}=\dfrac{5b-3c}{2}\Rightarrow5b-3c=0\)

=> 5b=3c =>\(\left\{{}\begin{matrix}b=\dfrac{3}{5}c\\a=\dfrac{2}{5}c\end{matrix}\right.\)

=>\(\dfrac{3}{5}c+\dfrac{2}{5}c+c=-50\)

=> \(c\left(\dfrac{3}{5}+\dfrac{2}{5}+1\right)=-50\)

=> 2c = -50

=> c= -25

=>\(\left\{{}\begin{matrix}b=-25.\dfrac{3}{5}=-15\\a=-25.\dfrac{2}{5}=-10\end{matrix}\right.\)

Vậy a= -10; b= -15; c= -25

20 tháng 10 2017

Ta luôn có :|x-2009|\(\ge\)0(1)

Mà :2009-|x-2009|=x nên 2009\(\ge\)x(2)

(1)(2) nên ta có x \(\in\){0;1;2;3;4;5;...;2009}

10 tháng 11 2016

Bài 1:

\(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{6}\right|+...+\left|x+\frac{1}{101}\right|=101x\)

Ta thấy:

\(VT\ge0\Rightarrow VP\ge0\Rightarrow101x\ge0\Rightarrow x\ge0\)

\(\Rightarrow\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{6}\right)+...+\left(x+\frac{1}{101}\right)=101x\)

\(\Rightarrow\left(x+x+...+x\right)+\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{101}\right)=0\)

\(\Rightarrow10x+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{10.11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\left(1-\frac{1}{11}\right)=0\)

\(\Rightarrow10x+\frac{10}{11}=0\)

\(\Rightarrow10x=-\frac{10}{11}\Rightarrow x=-\frac{1}{11}\)(loại,vì x\(\ge\)0)

 

 

10 tháng 11 2016

Bài 2:

Ta thấy: \(\begin{cases}\left(2x+1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\ge0\\\left|x+y+z\right|\ge0\end{cases}\)

\(\Rightarrow\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\left(2x+1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

\(\Rightarrow\begin{cases}\left(2x+1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}\)\(\Rightarrow\begin{cases}2x+1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{2}+\frac{2}{5}+z=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\-\frac{1}{10}=-z\end{cases}\)\(\Rightarrow\begin{cases}x=-\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{1}{10}\end{cases}\)

15 tháng 8 2018

a) \(2009-\left|x-2009\right|=x\)

* Nếu \(x-2009\ge0\Rightarrow x\ge2009\)

\(2009-\left(x-2009\right)=x\)

\(2009-x+2009=x\)

\(4018=2x\)

\(x=2009\)(TMĐK)

* Nếu \(x-2009< 0\Rightarrow x< 2009\)

\(2009-\left[-\left(x-2009\right)\right]=x\)

\(2009-\left(-x+2009\right)=x\)

\(2009+x-2009=x\)

\(0x=0\)

Nên \(x\in R\) trừ \(x< 2009\)

Vậy .......

16 tháng 8 2018

Bạn làm đc câu b, k ạ

a: =>|x-2009|=2009-x

=>x-2009<=0

=>x<=2009

b: =>2x-1=0 và y-2/5=0 và x+y-z=0

=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=5/10+4/10=9/10

28 tháng 1 2019

Vi 8x = 5y , 7y = 12z

=>\(\left\{{}\begin{matrix}\dfrac{x}{5}=\dfrac{y}{8}\\\dfrac{y}{12}=\dfrac{z}{7}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{x}{60}=\dfrac{y}{96}\\\dfrac{y}{96}=\dfrac{z}{56}\end{matrix}\right.\)

=> \(\dfrac{x}{60}=\dfrac{y}{96}=\dfrac{z}{56}\)
Ap dung tinh chat day ti so bang nhau co
\(\dfrac{x}{60}=\dfrac{y}{96}=\dfrac{z}{56}=\dfrac{x+y+z}{60+96+56}=\dfrac{-318}{212}=\dfrac{-3}{2}\)
\(\dfrac{x}{60}=\dfrac{-3}{2}\Rightarrow x=60.\dfrac{-3}{2}=-90\)
\(\dfrac{y}{96}=\dfrac{-3}{2}\Rightarrow y=96.\dfrac{-3}{2}=-144\)
\(\dfrac{z}{56}=\dfrac{-3}{2}\Rightarrow z=56.\dfrac{-3}{2}=-84\)
Vay x= -90, y= -144 va z=-84

c: =>|x-2009|=2009-x

=>x-2009<=0

=>x<=2009

d: =>2x-1=0 và y-2/5=0 và x+y-z=0

=>x=1/2 và y=2/5 và z=x+y=1/2+2/5=9/10

a: 8x=5y; 7y=12z

=>x/5=y/8; y/12=z/7

=>x/15=y/24=z/14

Áp dụng tính chất của DTSBN, ta được:

\(\dfrac{x}{15}=\dfrac{y}{24}=\dfrac{z}{14}=\dfrac{x+y+z}{15+24+14}=-\dfrac{318}{53}=-6\)

=>x=-90; y=-144; z=-84

23 tháng 1 2017

Ta thấy \(\left\{\begin{matrix}\left(2x-1\right)^{2008}\ge0\\\left(y-\frac{2}{5}\right)^{2008}\\\left|x+y-z\right|\ge0\end{matrix}\right.\ge0\)

\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\)

Mà theo đề ra

\(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)

\(\Rightarrow\left\{\begin{matrix}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{matrix}\right.\Rightarrow\left\{\begin{matrix}2x=1\\y=\frac{2}{5}\\z=x+y\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{2}{5}+\frac{1}{2}=\frac{9}{10}\end{matrix}\right.\)

Vậy \(x=\frac{1}{2}\) y=\(\frac{2}{5}\)và z=\(\frac{9}{10}\)

23 tháng 1 2017

Bạn thật tốthihi

a: \(\left(2x-1\right)^{2008}+\left(y-\dfrac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)

nên \(\left\{{}\begin{matrix}2x-1=0\\y-\dfrac{2}{5}=0\\x+y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{2}{5}\\z=x+y=\dfrac{9}{10}\end{matrix}\right.\)

b: Bạn xem lại đề, nghiệm rất xấu

 

 

6 tháng 12 2019

a) 2009 - |x - 2009| = x

 => |x - 2009| = 2009 - x (1)

ĐK : \(2009-x\ge0\Leftrightarrow x\le2009\)

Ta có (1) <=> \(\orbr{\begin{cases}x-2009=2009\\x-2009=-2009\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=2009\left(\text{loại}\right)\end{cases}}}\)

Vậy x = 0

b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2018}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2020}+\left|x+y-z\right|\ge0\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)

22 tháng 12 2019

\(\text{b)}\)

\(\text{Ta có: }\text{ }\left(2x-1\right)^{2018}\ge0\)

             \(\left(y-\frac{2}{5}\right)^{2020}\ge0\)

        \(\text{ và}\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)=0\)

\(\text{Dấu "=" xảy ra khi:}\)   

     \(\left(2x-1\right)^{2018}=0\) 

\(\Rightarrow2x-1\)         \(=0\)

\(\Rightarrow2x\)                  \(=1\)

\(\Rightarrow x\)                     \(=\frac{1}{2}\)

\(\text{ và:}\left(y-\frac{2}{5}\right)^{2020}=0\)

\(\Rightarrow y-\frac{2}{5}\)          \(=0\)

\(\Rightarrow y\)                      \(=\frac{2}{5}\)

\(\text{Nhớ k cho mình với nghe}\)     :33