Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn đăng nhiều quá nhưng mình chỉ biết phần \(\text{phân tích đa thức thành nhân tử}\) thôi
\(x^2+2x-3\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-1\right)\left(x+3\right)\)
\(x^2-10x+9\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-9\right)\left(x-1\right)\)
\(x^2-2x-15\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-5\right)\left(x+3\right)\)
\(x^2-2x-48\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-8\right)\left(x+6\right)\)
\(x^2-10x+24\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-6\right)\left(x-4\right)\)
\(4x^2+4x-15\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(2x-3\right)\left(2x+5\right)\)
\(3x^2-7x+2\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-2\right)\left(3x-1\right)\)
\(4x^2-5x+1\)
\(\text{phân tích đa thức thành nhân tử}\)
\(\left(x-1\right)\left(4x-1\right)\)
Bài 1: CMR các đa thức sau luôn dương vs mọi giá trị biến số:
a) x^2 + x +1
b) x^2 + 3x+3
c) x^2 + y^2 + 2(x-2y) +6
d) 2x^2 + y^2 + 2x( y-1) +2
Bài 2: Phân tích thành nhân tử:
a) x^2 + 2x-3
b) x^2 - 10x +9
c) x^2 - 2x -15
d) x^2 - 2x -48
e) x^2 - 10x+24
f)4x^2 + 4x -15
g) 3x^2 - 7x +2
h) 4x^2 - 5x +1
Bài 3: Tìm x biết :
a) x^2 +5x+6=0
b) x^2 - 10x + 16=0
c) x^2 - 10x +21=0
d) x^2 - 2x -3 =0
e) 2x^2 + 7x +3=0
f) x^2 - x- 6=0
Bài 4:
a)x^3 + 2x^2 - 3=0
b) x^3 - 7x -6=0
c) x^3 + x^2 +4=0
d) x^3 - 2x^2 - x+2 =0
Bạn đăng nhiều quá nhưng mình chỉ biết phần phân tích đa thức thành nhân tử thôi
x2+2x−3
phân tích đa thức thành nhân tử
(x−1)(x+3)
x2−10x+9
phân tích đa thức thành nhân tử
(x−9)(x−1)
x2−2x−15
phân tích đa thức thành nhân tử
(x−5)(x+3)
x2−2x−48
phân tích đa thức thành nhân tử
(x−8)(x+6)
x2−10x+24
phân tích đa thức thành nhân tử
(x−6)(x−4)
4x2+4x−15
phân tích đa thức thành nhân tử
(2x−3)(2x+5)
3x2−7x+2
phân tích đa thức thành nhân tử
(x−2)(3x−1)
4x2−5x+1
phân tích đa thức thành nhân tử
(x−1)(4x−1)
dài quá !
a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)
\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)
\(\Leftrightarrow24x=-13\)
hay \(x=-\dfrac{13}{24}\)
a) \(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)
\(\left(2x+1\right)^2-\left[2\left(x+2\right)\right]^2=9\)
\(\left[2x+1-2\left(x+2\right)\right]\left[2x+1+2\left(x+2\right)\right]=9\)
\(\left(2x+1-2x-4\right)\left(2x+1+2x+4\right)=9\)
\(-3\left(4x+5\right)=9\)
\(4x+5=-3\)
\(4x=-8\)
\(x=-2\)
b) \(x^2-2x-15=0\)
\(x^2-5x+3x-15=0\)
\(x\left(x-5\right)+3\left(x-5\right)=0\)
\(\left(x-5\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)
c) \(2x^2+3x-5=0\)
\(2x^2-2x+5x-5=0\)
\(2x\left(x-1\right)+5\left(x-1\right)=0\)
\(\left(x-1\right)\left(2x+5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\2x+5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-5}{2}\end{cases}}}\)
a: \(A=\left[\left(\dfrac{4x}{x+2}+\dfrac{8x^2}{4-x^2}\right)\right]:\left[\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right]\)
\(=\left(\dfrac{4x}{x+2}-\dfrac{8x^2}{\left(x-2\right)\left(x+2\right)}\right):\left(\dfrac{x-1}{x\left(x-2\right)}-\dfrac{2}{x}\right)\)
\(=\dfrac{4x\left(x-2\right)-8x^2}{\left(x+2\right)\left(x-2\right)}:\dfrac{x-1-2\left(x-2\right)}{x\left(x-2\right)}\)
\(=\dfrac{-8x}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x-2\right)}{x-1-2x+4}\)
\(=\dfrac{-8x^2}{\left(x+2\right)\cdot\left(-x+3\right)}\)
\(=\dfrac{8x^2}{\left(x-3\right)\left(x+2\right)}\)
b: \(x^2+2x=15\)
=>\(x^2+2x-15=0\)
=>(x+5)(x-3)=0
=>\(\left[{}\begin{matrix}x+5=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\left(nhận\right)\\x=3\left(loại\right)\end{matrix}\right.\)
Thay x=-5 vào A, ta được:
\(A=\dfrac{8\cdot\left(-5\right)^2}{\left(-5-3\right)\left(-5+2\right)}=\dfrac{8\cdot25}{\left(-8\right)\cdot\left(-3\right)}=\dfrac{25}{3}\)
c: |A|>A
=>A<0
=>\(\dfrac{8x^2}{\left(x-3\right)\left(x+2\right)}< 0\)
=>(x-3)(x+2)<0
TH1: \(\left\{{}\begin{matrix}x-3>0\\x+2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)
=>\(x\in\varnothing\)
TH2: \(\left\{{}\begin{matrix}x-3< 0\\x+2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 3\\x>-2\end{matrix}\right.\)
=>-2<x<3
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}-2< x< 3\\x\notin\left\{0;2\right\}\end{matrix}\right.\)
a. 3x(x-2)-x+2=0
3x(x-2)-(x-2)=0
(3x-1)(x-2)=0
=>\(\hept{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)
=> \(\hept{\begin{cases}3x=1\\x=2\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
vậy x thuộc (1/3;2)
Answer:
\(\left(2x-3\right).\left(x+1\right)-x.\left(2x+3\right)-9=0\)
\(\Rightarrow\left(2x^2+2x-3x-3\right)-2x^2-3x-9=0\)
\(\Rightarrow\left(2x^2-x-3\right)-2x^2-3x-9=0\)
\(\Rightarrow2x^2-x-3-2x^2-3x-9=0\)
\(\Rightarrow\left(2x^2-2x^2\right)-\left(x+3x\right)-\left(3+9\right)=0\)
\(\Rightarrow-4x-12=0\)
\(\Rightarrow x+3=0\)
\(\Rightarrow x=-3\)
\(2x.\left(x-3\right)-x+3=0\) (Sửa đề)
\(\Rightarrow2x.\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right).\left(2x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\2x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\2x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=\frac{1}{2}\end{cases}}}\)
\(2x.\left(x^2-4\right)+6.\left(4-x^2\right)=0\)
\(\Rightarrow2x.\left(x^2-4\right)-6.\left(x^2-4\right)=0\)
\(\Rightarrow2.\left(x-3\right).\left(x+2\right).\left(x-2\right)=0\)
Trường hợp 1: \(x-3=0\Rightarrow x=3\)
Trường hợp 2: \(x+2=0\Rightarrow x=-2\)
Trường hợp 3: \(x-2=0\Rightarrow x=2\)
`(x+2)(x^2 -2x+4) -x(x^2-2)=15`
`<=> x^3 +8 - x^3 + 2x-15=0`
`<=> 2x-7=0`
`<=> 2x=7`
`<=>x=7/2`
__
`(x-4)^2 -(x-2)(x+2)=6`
`<=>x^2 - 8x+16- x^2 +4-6=0`
`<=> -8x+14=0`
`<=> -8x=-14`
`<=>x=14/8= 7/4`
__
`x^4 -2x^3 +x^2-2x=0`
`<=>x(x^3-2x^2+x-2)=0`
`<=> x(x^3+x-2x^2-2)=0`
`<=>x(x(x^2+1) -2(x^2+1))=0`
`<=> x(x^2+1)(x-2)=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
a) \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2-2\right)=15\)
\(\Leftrightarrow\left(x^3+2^3\right)-\left(x^3-2x\right)=15\)
\(\Leftrightarrow x^3+8-x^3+2x=15\)
\(\Leftrightarrow2x+8=15\)
\(\Leftrightarrow2x=15-8\)
\(\Leftrightarrow2x=7\)
\(\Leftrightarrow x=\dfrac{7}{2}\)
b) \(\left(x-4\right)^2-\left(x+2\right)\left(x-2\right)=6\)
\(\Leftrightarrow x^2-8x+16-\left(x^2-4\right)=6\)
\(\Leftrightarrow x^2-8x+16-x^2+4=6\)
\(\Leftrightarrow-8x+20=6\)
\(\Leftrightarrow-8x=6-20\)
\(\Leftrightarrow-8x=-14\)
\(\Leftrightarrow x=\dfrac{7}{4}\)
c) \(x^4-2x^3+x^2-2x=0\)
\(\Leftrightarrow x^3\left(x-2\right)+x\left(x-2\right)=0\)
\(\Leftrightarrow\left(x^3+x\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x^2+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)