Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đăng kí hộ
https://www.youtube.com/channel/UCT23clmdY5azigRNMRDxGfw
a) \(\left(x^2+5\right).\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+5=0\\x^2-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-5\left(vl\right)\\x^2=25\end{cases}\Rightarrow}\orbr{\begin{cases}\\x=\pm5\end{cases}}}\)
b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
\(\Rightarrow\left(x^2-5\right)\)và \(\left(x^2-25\right)\)trái dấu
Vì \(\left(x^2-5\right)>\left(x^2-25\right)\)
\(\Rightarrow\hept{\begin{cases}x^2-5>0\\x^2-25< 25\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 50\end{cases}}}\)
\(\Rightarrow5< x^2< 50\)
\(\Rightarrow x^2\in\left\{0;1;4;9;16;25;36;49\right\}\)
\(\Rightarrow x\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7\right\}\)
c) \(\left(x-2\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
các câu còn lại lm tương tự nhé!! hok tốt!!
a, => x^2+5 = 0
=> x^2=-5 ( vô lí vì x^2 >= 0)
=> ko tồn tại x tm bài toán
b, Vì x^2-5 > x^2-25
Mà (x^2-5): (x^2-25) < 0
=> x^2-5 >0 và x^2-25 <0
=> 5 < x^2 < 25
=> \(x>\sqrt{5}\)hoặc \(x< -\sqrt{5}\) và -5 < x < 5
=> -5 < x < -\(\sqrt{5}\)hoặc \(\sqrt{5}\)< x < 5
k mk nha
b. co 2 truong hop
1.x+2=0 hoac x-1=0
neu x+2=0thi x=-2
neu x-1=0 thi x=1
vay x=-2hoac x=1
Tớ làm phần B
Có 2 trường hợp
1 . Neu x + 2 =0 hoac x -1 = 0 .
Neu x+ 2= 0 thi x -2
Nếu x -1 =0 thì x =1
từ đây ta suy ra :x = 2 hoặc 1
a) \(\left(x^2+5\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5=0\\x^2-25=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x\in\varnothing\\x=5\end{cases}}\)\(\Rightarrow x=5\)
b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5< 0\\x^2-25< 0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x< \sqrt{5}\\x< 5\end{cases}}\)
c) \(\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Câu (d) và (e) bạn làm tương tự (a) và (b) nhé
a, \(\left(x^2+5\right)\left(x^2-25\right)=0\)= 0
Vậy \(x\in\varnothing\)
<=> \(x^2\)- 5 và \(x^2\)- 25 trái dấu
Ta thấy \(x^2\) - 5 > \(x^2\) - 25 nên <=> x < 5
c, (x - 2)(x + 1) = 0
Vậy
\(\left(x^2+7\right)\left(x^2-49\right)< 0\)
olm.vn/hoi-dap/detail/28995343852.html
bạn tham khảo nha thực ra mình ko biết làm tha lỗi
e) \(\left(x^2-7\right)\left(x^2-49\right)< 0\)
TH1:
TH2:
Vậy x < 2 và x >7 hoặc x >3 và x < 7
a, (x2+5).(x2-25)=0
trường hợp 1(+):
x2+5=0
x2=0-5
x2=-5
không có giá trị nguyên nào
trường hợp 2
x2-25=0
x2=0+25
x2=25
x=5
vậy x =5
câu b làm tương tự nha. thông cảm
Bài giải
a, \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
\(\Rightarrow\text{ }\left(x^2-5\right)\text{ và }\left(x^2-25\right)\text{ trái dấu}\)
Mà \(x^2-5>x^2-25\)
\(\Rightarrow\hept{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 25\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>\frac{5}{x}\\x< \frac{25}{x}\end{cases}}\)\(\Rightarrow\text{ }\frac{5}{x}< x< \frac{25}{x}\text{ }\Rightarrow\text{ }\frac{5}{x}< \frac{x^2}{x}< \frac{25}{x}\text{ }\Rightarrow\text{ }5< x^2< 25\)
\(\Rightarrow\text{ }x\in\left\{\pm3\text{ ; }\pm4\right\}\)
b, \(\left(x-1\right)\left(y+2\right)=-3\)
\(\Rightarrow\text{ }\left(x-1\right)\text{ ; }\left(y+2\right)\inƯ\left(-3\right)\)
Ta có bảng :
x - 1 | - 3 | - 1 |
y + 2 | 1 | 3 |
x | - 2 | 0 |
y | - 1 | 1 |
\(\Rightarrow\text{ }\left(x\text{ ; }y\right)=\left(-2\text{ ; }-1\right)\text{ ; }\left(0\text{ ; }1\right)\)
c, \(\left(x-2\right)\left(5-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\5-x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2\\x=5\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{2\text{ ; }5\right\}\)
d, \(\left(x-1\right)\left(x^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x^2+1=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=1\\x^2=-1\text{ ( loại )}\end{cases}}\)
\(\Rightarrow\text{ }x=1\)
a) \(\left(2x+\frac{3}{5}\right)^2-\frac{9}{25}=0\)
\(\left(2x+\frac{3}{5}\right)^2=\frac{9}{25}\)
\(\left(2x+\frac{3}{5}\right)^2=\left(\frac{3}{5}\right)^2\)
\(=>2x+\frac{3}{5}=\frac{3}{5}\)
\(2x=\frac{3}{5}-\frac{3}{5}\)
\(2x=0\)
\(x=0:2\)
\(x=0\)
b) \(\left(3x-1\right).\left(-\frac{1}{2x}+5\right)=0\)
=> \(\left(3x-1\right)=0\)hoặc \(\left(-\frac{1}{2x}+5\right)=0\)hoặc \(\left(3x-1\right)\)và\(\left(-\frac{1}{2x}+5\right)\)cùng bằng 0.
\(\orbr{\begin{cases}3x-1=0\\-\frac{1}{2x}+5=0\end{cases}}=>\orbr{\begin{cases}3x=1\\-\frac{1}{2x}=-5\end{cases}}=>\orbr{\begin{cases}x\in\varnothing\\2x=\frac{1}{5}\end{cases}}=>x=\frac{1}{5}:2=>x=\frac{1}{10}\)
a, (x2 + 5)(x2 - 25) = 0
\(\Rightarrow\left[\begin{matrix}x^2+5=0\\x^2+25=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x^2=-5\left(loại\right)\\x^2=-25\left(loại\right)\end{matrix}\right.\)
Vậy \(x=\varnothing\)
b, (x2 - 5)(x2 - 25) < 0
<=> x2 - 5 và x2 - 25 trái dấu
Ta thấy x2 - 5 > x2 - 25 nên \(\left\{\begin{matrix}x^2-5>0\\x^2-25< 0\end{matrix}\right.\) <=> x < 5
c, (x - 2)(x + 1) = 0
\(\Rightarrow\left[\begin{matrix}x-2=0\\x+1=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{2;-1\right\}\)