Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,x2+6x-7=0
=>x2+7x-x-7=0
=>(x^2+7x)-(x+7)=0
=>x(x+7)-(x+7)=0 =>(x+7)(x-1)=0
=>\(\orbr{\begin{cases}x+7=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=1\end{cases}}}\)
b, x^3-2x^2-5x+6=0
=>x(x^2-2x-5+6)=0
=>x(x^2-2x+1)=0\(^{\orbr{\begin{cases}x=0\\\left(x-1^2\right)=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
c, 2x^2-5x+3=0
=>2x^2-2x-3x+3=0
\(x^3-19x-30=0\)
\(\Rightarrow x^3+5x^2+6x-5x^2-25x-30=0\)
\(\Rightarrow\left(x-5\right)\left(x^2+5x+6\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x^2+2x+3x+6\right)=0\)
\(\Rightarrow\left(x-5\right)[x\left(x+2\right)+3\left(x+2\right)]=0\)
\(\Rightarrow\left(x-5\right)\left(x+3\right)\left(x+2\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-5=0\\x+3=0\\x+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=5\\x=-3\\x=-2\end{cases}}\)
1.
a. x2 - 2x + 1 = 0
x2 - 2x*1 + 12 = 0
(x-1)2 = 0
............( tới đây tui bí rùi tự suy nghĩ rùi lm tiếp ik)
1, Tìm x biết:
a, x2 - 2x +1 = 0
(x-1)2 = 0
x-1 = 0
x = 1. Vậy ...
b, ( 5x + 1)2 - (5x - 3) ( 5x + 3) = 30
25x2 +10x + 1 - (25x2 -9) = 30
25x2 +10x + 1 - 25x2 +9 = 30
10x + 10 =30
10(x+1) = 30
x+1 =3
x = 2. vậy ...
c, ( x - 1) ( x2 + x + 1) - x ( x +2 ) ( x - 2) = 5
(x3 - 1) - x(x2 -4) = 5
x3 - 1 - x3 + 4x = 5
4x - 1 = 5
4x = 6
x = \(\dfrac{3}{2}\) .vậy ...
d, ( x - 2)3 - ( x - 3) ( x2 + 3x + 9 ) + 6 ( x + 1)2 = 15
x3 - 6x2 + 12x - 8 - (x3 - 27) + 6 (x2 + 2x +1) =15
x3 - 6x2 + 12x - 8 - x3 + 27 + 6x2 + 12x +6 =15
24x + 25 = 15
24x = -10
x = \(\dfrac{-5}{12}\) vậy ...
\(x^3+x=0\)
\(\Rightarrow x.\left(x^2+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x^2+1=0\Rightarrow x^2=-1\Rightarrow x\in\varnothing\end{cases}}\)
\(x^2-2x-3=0\)
\(\Rightarrow x.\left(x-2\right)=3\)
Vì \(x>x-2\)và \(x\inƯ\left(3\right)=\left\{3;-3\right\}\)
Các phần sau tương tự
\(x^3+x=0\)
\(\Leftrightarrow\)\(x\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x=0\)
\(x^2-2x-3=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy...
\(2x^2+5x-3=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+3=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=\frac{1}{2}\end{cases}}\)
Vậy...
\(x+5x^2=0\)
\(\Leftrightarrow\)\(x\left(5x+1\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\5x+1=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=-\frac{1}{5}\end{cases}}\)
Vậy...
\(a,x^4+2x^3+x^2=\left(x^2+x\right)^2\)
\(b,x^2+5x-6=x^2-x+6x-6=x\left(x-1\right)+6\left(x-1\right)\)\(=\left(x-1\right)\left(x+6\right)\)
\(c,5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)\(x^4+8x=x\left(x^3+8\right)=x\left(x+2\right)\left(x^2-2x+4\right)\) \(e,x^2+x-6=x^2+3x-2x-6=x\left(x+3\right)-2\left(x+3\right)=\left(x-2\right)\left(x+3\right)\)\(f,x^2-2x-3=x^2-3x+x-3=x\left(x-3\right)+\left(x-3\right)=\left(x+1\right)\left(x-3\right)\)\(h,2x^2+5x-3=0\Leftrightarrow2x^2-6x+x-3=0\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)
\(a,x^2-2x=0\)
\(\Rightarrow x\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy ...
\(b,\left(5-2x\right)^2-16=0\)
\(\Rightarrow\left(5-2x\right)^2=16\)
\(\Rightarrow\left(5-2x\right)^2=4^2\)
\(\Rightarrow5-2x=\pm4\)
\(\Rightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=1\\2x=9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{9}\end{matrix}\right.\)
Vậy ...
\(c,x\left(x+3\right)-x^2-11=0\)
\(\Rightarrow x^2+3x-x^2-11=0\)
\(\Rightarrow3x-11=0\)
\(\Rightarrow3x=11\)
\(\Rightarrow x=\dfrac{11}{3}\)
Vậy ...
a. \(\left(2x-1\right)^2-4x^2+1=0\)
\(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
\(\Leftrightarrow2-4x=0\)
\(\Leftrightarrow x=\dfrac{1}{2}\)
Vậy ...
b/ \(6x^3-24x=0\)
\(\Leftrightarrow6x\left(x^2-4\right)=0\)
\(\Leftrightarrow6x\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}6x=0\\x-2=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
Vậy ...
c/ \(2x\left(x-3\right)-4x+12=0\)
\(\Leftrightarrow2x\left(x-3\right)-4\left(x-3\right)=0\)
\(\Leftrightarrow2\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Vậy ...
d/ \(x^3-5x^2+x-5=0\)
\(\Leftrightarrow x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+1\right)=0\)
Mà \(x^2+1>0\)
\(\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy..
\(a,\)\(x^4-4x^3+4x^2=0\)
\(\Leftrightarrow x^2.\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x^2.\left(x^2-2.x.2+2^2\right)=0\)
\(\Leftrightarrow x^2.\left(x-2\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\\left(x-2\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
\(b,\)\(x^2+5x+4=0\)
\(\Leftrightarrow x^2+x+4x+4=0\)
\(\Leftrightarrow x.\left(x+1\right)+4.\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right).\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
\(c,\)\(9x-6x^2-3=0\)
\(\Leftrightarrow-3.\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow2x^2-2x-x+1=0\)
\(\Leftrightarrow2x.\left(x-1\right)-\left(x-1\right)\)
\(\Leftrightarrow\left(x-1\right).\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\2x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\2x=1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
\(d,\)\(2x^2+5x+2=0\)
\(\Leftrightarrow2x^2+4x+x+2=0\)
\(\Leftrightarrow2x.\left(x+2\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right).\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\2x=-1\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}\)
a, x2- 2x -3 = 0
\(\Leftrightarrow\) x2 + x - 3x - 3 =0 \(\Leftrightarrow\) x(x+1) - 3(x+1) = 0
\(\Leftrightarrow\) (x+1)(x-3) = 0
\(\Leftrightarrow\) x+1 = 0 hoặc x - 3 =0
1, x+1 = 0 \(\Leftrightarrow\) x = -1 2, x-3 = 0 \(\Leftrightarrow\) x = 3
b, \(2x^2+5x-3=0\)
\(\Leftrightarrow\)\(2x^2-x+6x-3=0\)
\(\Leftrightarrow x\left(2x-1\right)+3\left(2x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\) 2x - 1 = 0 hoặc x + 3 = 0
1, 2x -1 = 0 \(\Leftrightarrow x=\dfrac{1}{2}\) 2, x + 3 = 0 \(\Leftrightarrow x=-3\)