K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2020

a) x3 = 25x

=> x3 - 25x = 0

=> x(x2 - 25) = 0

=> x(x - 5)(x + 5) = 0

=> x = 0 hoặc x - 5 = 0 hoặc x + 5 = 0

=> x = 0 hoặc x = 5 hoặc x = -5

b) x2 - 6x + 8 = 0

=> x2 - 6x + 9 - 1 = 0

=> (x - 3)2 - 12 = 0

=> (x - 3 - 1)(x - 3 + 1) = 0

=> (x - 4)(x - 2) = 0

=> \(\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

22 tháng 9 2019

\(x^2-4x-1=0\)

\(\left(x^2-2\cdot x\cdot2+4\right)-5=0\)

\(\left(x-2\right)^2=\left(\sqrt{5}\right)^2\)

\(\Rightarrow x-2=\pm\sqrt{5}\)

Tự giải tiếp nha ...

22 tháng 9 2019

\(x^2-4x-1=0\)

\(\Delta=\left(-4\right)^2-4.\left(-1\right)=20\)

pt có 2 nghiệm

\(x_1=\frac{-4-\sqrt{20}}{2}=-2-\sqrt{5}\)

\(x_2=\frac{-4+\sqrt{20}}{2}=-2+\sqrt{5}\)

15 tháng 3 2019

sáng mai chị làm cho

30 tháng 6 2019

1) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

Để PT bằng 0 thì:

\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)

\(\Rightarrow x=1\)và \(y=2\)

2) \(y^2+2y+5-12x+9x^2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)

..............................................................................

..............<Giải thích như câu đầu>......................

.............................................................................

\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)

\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)

3) \(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)

......................................................................

...............<Giải thích như câu đầu>..............

.......................................................................

\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)

\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)

30 tháng 6 2019

1) \(x^2-2x+5+y^2-4y=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)

Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

Để PT bằng 0 thì:

\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)

\(\Rightarrow x=1\)và \(y=2\)

2) \(y^2+2y+5-12x+9x^2=0\)

\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)

\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)

..............................................................................

..............<Giải thích như câu đầu>......................

.............................................................................

\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)

\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)

3) \(x^2+20+9y^2+8x-12y=0\)

\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)

......................................................................

...............<Giải thích như câu đầu>..............

.......................................................................

\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)

\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)

13 tháng 11 2019

<=> 2x^2-x-(x^2-4x+4)=7

<=> x^2+3x-11=0

<=> 4x^2+12x=44

<=> (2x+3)^2=53

<=> 2x+3 = căn 53 hoặc - căn 53

<=> x=(căn 53-3)/2 hoặc x=(-căn 53-3)/2.

16 tháng 12 2018

\(a,x^3=x\)

\(\Rightarrow x^3-x=0\)

\(\Rightarrow x\left(x^2-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-1=0\end{cases}}\)

\(\Rightarrow x^2=\left(-1\right)^2=1\)

\(KL:x=0;x=1\)

16 tháng 12 2018

c) \(2x^3+3x^2+2x+3=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)\left(\frac{2x^3+3x^2+2x+3}{x+\frac{3}{2}}\right)=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)\left(2x^2+2\right)=0\) (bạn tự thực hiện phép chia đa thức giúp mình)

\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=0\\2x^2+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\2\left(x^2+1\right)=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\\x^2+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{3}{2}\left(C\right)\\x^2=-1\left(L\right)\end{cases}}\)

Vậy đa thức có nghiệm duy nhất \(x=-\frac{3}{2}\)

6 tháng 10 2020

a) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 9( x + 1 )2 = 4

<=> x3 - 9x2 + 27x - 27 - ( x3 - 27 ) + 9( x2 + 2x + 1 ) = 4

<=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9x2 + 18x + 9 = 4

<=> 45x + 9 = 4

<=> 45x = -5

<=> x = -5/45 = -1/9

b) x( x - 5 )( x + 5 ) - ( x + 2 )( x2 - 2x + 4 ) = 17

<=> x( x2 - 25 ) - ( x3 + 8 ) = 17

<=> x3 - 25x - x3 - 8 = 17

<=> -25x - 8 = 17

<=> -25x = 25

<=> x = -1