Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a. 2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0
2x=- 4/5 hoặc 3x=1/2
x=-2/5 hoặc x=\(\dfrac{1}{6}\)
b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0
x=2/5 hoặc x=-\(\dfrac{4}{7}\)
d. x(1+5/8-12/16)=1
\(\dfrac{7}{8}\)x=1=> x=8/7
\(a,\dfrac{1}{4}-\left(2x+\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow\left(2x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{1}{2}=\dfrac{1}{2}\\2x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-\dfrac{1}{2}\\2x=-\dfrac{1}{2}-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=0\\2x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\) \(b,\dfrac{1}{2}x+\dfrac{2}{3}x-1=-3\dfrac{1}{3}\\ \Leftrightarrow x\left(\dfrac{1}{2}+\dfrac{2}{3}\right)=-\dfrac{10}{3}+1\\ \Leftrightarrow\left(\dfrac{3+4}{6}\right)x=\dfrac{-10}{3}+\dfrac{3}{3}\\ \Leftrightarrow\dfrac{7}{6}x=\dfrac{-7}{3}\\ \Leftrightarrow x=\left(-\dfrac{7}{3}\right):\dfrac{7}{6}\\ \Leftrightarrow x=-2\)
Vậy \(x=0;x=-\dfrac{1}{2}\) Vậy \(x=-2\)
\(c,\dfrac{x-12}{4}=\dfrac{1}{2}\\ \Leftrightarrow2.\left(x-12\right)=4\\ \Leftrightarrow2x-24=4\\ \Leftrightarrow2x=24+2\\ \Leftrightarrow2x=26\\ \Leftrightarrow x=26:2=13\)
Vậy \(x=13\)
`@` `\text {Ans}`
`\downarrow`
`a)`
\(5\cdot x^3-5=0\)
`=> 5*x^3 = 0+5`
`=> 5*x^3 = 5`
`=> x^3 = 5 \div 5`
`=> x^3 = 1`
`=> x^3 = 1^3`
`=> x=1`
Vậy, `x=1.`
`b)`
\(( x+1)^2 = 16\)
`=> (x+1)^2 = (+-4)^2`
`=>`\(\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=4-1\\x=-4-1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
Vậy, `x \in {3; -5}`
`c)`
\(( x+1)^3 = 27\)
`=> (x+1)^3 = 3^3`
`=> x+1=3`
`=> x=3-1`
`=> x=2`
Vậy, `x=2.`
`d)`
\(( x-1)^3 = 343\)
`=> (x-1)^3 = 7^3`
`=> x-1=7`
`=> x=7+1`
`=> x=8`
Vậy, `x=8.`
`e)`
\((2x - 1^3) = 125\) hay đề là `(2x-1)^3 = 125` vậy ạ?
Mình làm cả 2 TH nhé!
`(2x-1^3)=125`
`=> 2x-1=125`
`=> 2x=125+1`
`=> 2x=126`
`=> x=126 \div 2`
`=> x=63`
TH2:
`(2x-1)^3 = 125`
`=> (2x-1)^3 = 5^3`
`=> 2x-1=5`
`=> 2x=5+1`
`=> 2x=6`
`=> x=6 \div 2`
`=> x=3`
Vậy, `x=3.`
(a) \(5x^3-5=0\Leftrightarrow5x^3=5\Leftrightarrow x^3=1\Leftrightarrow x=1\)
(b) \(\left(x+1\right)^2=16\Rightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
(c) \(\left(x+1\right)^3=27\Leftrightarrow x+1=3\Leftrightarrow x=2\)
(d) \(\left(x-1\right)^3=343\Leftrightarrow x-1=7\Leftrightarrow x=8\)
(e) \(\left(2x-1\right)^3=125\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\)
`a,(5-x)(x-1) < 0`
`<=>5-x<0` hoặc `x-1<0`
`<=>5 <x` hoặc `x<1`
Vậy `S={x|5<x;x<1}`
`b,(x-4)(x+1/2) >= 0`
`<=>TH1 : {(x-4>=0),(x+1/2 >=0):}<=>{(x>=4(TM)),(x>= -1/2(L)):}`
`<=>TH2 :{(x-4<=0),(x+1/2 <= 0):} <=>{(x<=4(L)),(x<=-1/2(TM)):}`
`=>x<= -1/2` hoặc `x>=4`
Vậy `S={x|x<= -1/2 ; x>=4}`
a) \(x\left(x-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b) \(\left(-7-x\right)\left(-x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)
c) \(\left(x+3\right)\left(x-7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)
d) \(\left(x-3\right)\left(x^2+12\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)
\(\Rightarrow x=3\)
e) \(\left(x+1\right)\left(2-x\right)\ge0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)
\(\Rightarrow-1\le x\le2\)
f) \(\left(x-3\right)\left(x-5\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow3\le x\le5\)
a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)
d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3
1) Do x ∈ Z và 0 < x < 3
⇒ x ∈ {1; 2}
2) Do x ∈ Z và 0 < x ≤ 3
⇒ x ∈ {1; 2; 3}
3) Do x ∈ Z và -1 < x ≤ 4
⇒ x ∈ {0; 1; 2; 3; 4}
\(a,x\cdot\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=0-2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
a)x.(x+2)=0=>x=0 hoặc x+2=0
=>x=0 hoặc x=-2
b)7/12 .(x-3)=0
=>x-3=0
=>x=3