K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2018

\(a,x\cdot\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=0-2\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

12 tháng 2 2018

a)x.(x+2)=0=>x=0 hoặc x+2=0

                  =>x=0 hoặc x=-2

b)7/12 .(x-3)=0

=>x-3=0

=>x=3

Bài 2: 

a: =>x=0 hoặc x+3=0

=>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1

27 tháng 9 2018

20 tháng 7 2021

a.   2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0

2x=- 4/5 hoặc 3x=1/2

x=-2/5 hoặc x=\(\dfrac{1}{6}\)

b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0

x=2/5 hoặc x=-\(\dfrac{4}{7}\)

d. x(1+5/8-12/16)=1

\(\dfrac{7}{8}\)x=1=> x=8/7

7 tháng 4 2023

\(a,\dfrac{1}{4}-\left(2x+\dfrac{1}{2}\right)^2=0\\ \Leftrightarrow\left(2x+\dfrac{1}{2}\right)^2=\dfrac{1}{4}\\ \Leftrightarrow\left[{}\begin{matrix}2x+\dfrac{1}{2}=\dfrac{1}{2}\\2x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{2}-\dfrac{1}{2}\\2x=-\dfrac{1}{2}-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=0\\2x=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\)  \(b,\dfrac{1}{2}x+\dfrac{2}{3}x-1=-3\dfrac{1}{3}\\ \Leftrightarrow x\left(\dfrac{1}{2}+\dfrac{2}{3}\right)=-\dfrac{10}{3}+1\\ \Leftrightarrow\left(\dfrac{3+4}{6}\right)x=\dfrac{-10}{3}+\dfrac{3}{3}\\ \Leftrightarrow\dfrac{7}{6}x=\dfrac{-7}{3}\\ \Leftrightarrow x=\left(-\dfrac{7}{3}\right):\dfrac{7}{6}\\ \Leftrightarrow x=-2\)

Vậy \(x=0;x=-\dfrac{1}{2}\)                 Vậy \(x=-2\)

\(c,\dfrac{x-12}{4}=\dfrac{1}{2}\\ \Leftrightarrow2.\left(x-12\right)=4\\ \Leftrightarrow2x-24=4\\ \Leftrightarrow2x=24+2\\ \Leftrightarrow2x=26\\ \Leftrightarrow x=26:2=13\)

Vậy \(x=13\)

 

7 tháng 4 2023

thanks bn!

`@` `\text {Ans}`

`\downarrow`

`a)`

\(5\cdot x^3-5=0\)

`=> 5*x^3 = 0+5`

`=> 5*x^3 = 5`

`=> x^3 = 5 \div 5`

`=> x^3 = 1`

`=> x^3 = 1^3`

`=> x=1`

Vậy, `x=1.`

`b)`

\(( x+1)^2 = 16\)

`=> (x+1)^2 = (+-4)^2`

`=>`\(\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=4-1\\x=-4-1\end{matrix}\right.\)

`=>`\(\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

Vậy, `x \in {3; -5}`

`c)`

\(( x+1)^3 = 27\)

`=> (x+1)^3 = 3^3`

`=> x+1=3`

`=> x=3-1`

`=> x=2`

Vậy, `x=2.`

`d)`

\(( x-1)^3 = 343\)

`=> (x-1)^3 = 7^3`

`=> x-1=7`

`=> x=7+1`

`=> x=8`

Vậy, `x=8.`

`e)`

\((2x - 1^3) = 125\) hay đề là `(2x-1)^3 = 125` vậy ạ?

Mình làm cả 2 TH nhé!

`(2x-1^3)=125`

`=> 2x-1=125`

`=> 2x=125+1`

`=> 2x=126`

`=> x=126 \div 2`

`=> x=63`

TH2:

`(2x-1)^3 = 125`

`=> (2x-1)^3 = 5^3`

`=> 2x-1=5`

`=> 2x=5+1`

`=> 2x=6`

`=> x=6 \div 2`

`=> x=3`

Vậy, `x=3.`

26 tháng 6 2023

(a) \(5x^3-5=0\Leftrightarrow5x^3=5\Leftrightarrow x^3=1\Leftrightarrow x=1\)

(b) \(\left(x+1\right)^2=16\Rightarrow\left[{}\begin{matrix}x+1=4\\x+1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)

(c) \(\left(x+1\right)^3=27\Leftrightarrow x+1=3\Leftrightarrow x=2\)

(d) \(\left(x-1\right)^3=343\Leftrightarrow x-1=7\Leftrightarrow x=8\)

(e) \(\left(2x-1\right)^3=125\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\)

16 tháng 8 2023

`a,(5-x)(x-1) < 0`

`<=>5-x<0` hoặc `x-1<0`

`<=>5 <x` hoặc `x<1`

Vậy `S={x|5<x;x<1}`

`b,(x-4)(x+1/2) >= 0`

`<=>TH1 : {(x-4>=0),(x+1/2 >=0):}<=>{(x>=4(TM)),(x>= -1/2(L)):}`

`<=>TH2 :{(x-4<=0),(x+1/2 <= 0):} <=>{(x<=4(L)),(x<=-1/2(TM)):}`

`=>x<= -1/2` hoặc `x>=4`

Vậy `S={x|x<= -1/2 ; x>=4}`

10 tháng 8 2023

a) \(x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\left(-7-x\right)\left(-x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)

c) \(\left(x+3\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

d) \(\left(x-3\right)\left(x^2+12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)

\(\Rightarrow x=3\)

e) \(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)

\(\Rightarrow-1\le x\le2\)

f) \(\left(x-3\right)\left(x-5\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow3\le x\le5\)

a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)

d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3

9 tháng 1

1) Do x ∈ Z và 0 < x < 3

⇒ x ∈ {1; 2}

2) Do x ∈ Z và 0 < x ≤ 3

⇒ x ∈ {1; 2; 3}

3) Do x ∈ Z và -1 < x ≤ 4

⇒ x ∈ {0; 1; 2; 3; 4}