Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3) tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2
\(\Rightarrow M\left(x\right)=x^2-mx+2\)
\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)
\(\Leftrightarrow1-m\left(-1\right)=-2\)
\(\Leftrightarrow m\left(-1\right)=3\)
\(\Leftrightarrow m=-3\)
vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)
4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)
\(\Leftrightarrow K\left(2\right)=a+b=3\)
\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)
\(\Leftrightarrow a+\left(-b\right)+c2=5\)
ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
vậy \(a=1;b=2;c=3\)
1. a) Sắp xếp :
f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9
b) h(x) = f(x) + g(x)
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )
= 3x2- 3x
c) h(x) có nghiệm <=> 3x2 - 3x = 0
<=> 3x( x - 1 ) = 0
<=> 3x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của h(x) là x= 0 hoặc x = 1
2. D(x) = A(x) + B(x) - C(x)
= 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2
= ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 )
= 9x3
b) D(x) có nghiệm <=> 9x3 = 0 => x = 0
Vậy nghiệm của D(x) là x = 0
3. M(x) = x2 - mx + 2
x = -1 là nghiệm của M(x)
=> M(-1) = (-1)2 - m(-1) + 2 = 0
=> 1 + m + 2 = 0
=> 3 + m = 0
=> m = -3
Vậy với m = -3 , M(x) có nghiệm x = -1
4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )
K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1
=> a + 0b + c.0.(-1) = 1
=> a + 0 = 1
=> a = 1
K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3
=> 1 + 1b + c.1.0 = 3
=> 1 + b + 0 = 3
=> b + 1 = 3
=> b = 2
K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5
=> 1 + 5(-1) + c(-1)(-2) = 5
=> 1 - 5 + 2c = 5
=> 2c - 4 = 5
=> 2c = 9
=> c = 9/2
Vậy a = 1 ; b = 2 ; c = 9/2
1/
a/ Đặt f (x) = x2 - 3
Khi f (x) = 0
=> \(x^2-3=0\)
=> \(x^2=3\)
=> \(x=\sqrt{3}\)
Vậy \(\sqrt{3}\)là nghiệm của đa thức x2 - 3.
b/ Đặt g (x) = x2 + 2
Khi g (x) = 0
=> \(x^2+2=0\)
=> \(x^2=-2\)
=> \(x\in\varnothing\)
Vậy x2 + 2 vô nghiệm.
c/ Đặt P (x) = x2 + (x2 + 3)
Khi P (x) = 0
=> \(x^2+\left(x^2+3\right)=0\)
=> \(\hept{\begin{cases}x^2=0\\x^2+3=0\end{cases}}\)=> \(\hept{\begin{cases}x=0\\x=\sqrt{3}\end{cases}}\)(loại)
Vậy x2 + (x2 + 3) vô nghiệm.
d/ Đặt \(Q\left(x\right)=2x^2-\left(1+2x^2\right)+1\)
Khi Q (x) = 0
=> \(2x^2-\left(1+2x^2\right)+1=0\)
=> \(2x^2-\left(1+2x^2\right)=-1\)
=> \(2x^2-1-2x^2=-1\)
=> -1 = -1
Vậy đa thức \(2x^2-\left(1+2x^2\right)+1\)có vô số nghiệm.
e/ Đặt \(h\left(x\right)=\left(2x-1\right)^2-16\)
Khi h (x) = 0
=> \(\left(2x-1\right)^2-16=0\)
=> \(\left(2x-1\right)^2=16\)
=> \(2x-1=4\)
=> 2x = 5
=> \(x=\frac{5}{2}\)
Vậy đa thức \(\left(2x-1\right)^2-16\)có nghiệm là \(\frac{5}{2}\).
a) \(a^3+a^2b-a^2c-abc=a^2\left(a+b\right)-ac\left(a+b\right)=a\left(a+b\right)\left(a-c\right)\)
b) mk chỉnh lại đề
\(x^2+2xy+y^2-xz-yz=\left(x+y\right)^2-z\left(x+y\right)=\left(x+y\right)\left(x+y-z\right)\)
c) \(4-x^2-2xy-y^2=4-\left(x+y\right)^2=\left(2-x-y\right)\left(2+x+y\right)\)
d) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)
2.Tìm x, biết
a,(x-1)3=3 (x-1)3=343
=> (x-1)3=73
=> x -1 = 7
=> x = 8
B, (X-2)4=4096
(X-2)4= 84
=> x - 2 = 8
=> x = 10
C,(2x2-13)4=(-5)4
=> 2x2-13 = -5
=> 2x2 = 8
=> x2 = 4
=> x = 2
Study well
a. (x-1)3 = 343
=> (x-1)3 = 73
=> x - 1 = 7
=> x = 7 + 1
=> x = 8
Bài 1: (1/2x - 5)20 + (y2 - 1/4)10 < 0 (1)
Ta có: (1/2x - 5)20 \(\ge\)0 \(\forall\)x
(y2 - 1/4)10 \(\ge\)0 \(\forall\)y
=> (1/2x - 5)20 + (y2 - 1/4)10 \(\ge\)0 \(\forall\)x;y
Theo (1) => ko có giá trị x;y t/m
Bài 2. (x - 7)x + 1 - (x - 7)x + 11 = 0
=> (x - 7)x + 1.[1 - (x - 7)10] = 0
=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{10}=0\end{cases}}\)
=> \(\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{10}=1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x-7=1\\x-7=-1\end{cases}}\)
=> x = 7
hoặc : \(\orbr{\begin{cases}x=8\\x=6\end{cases}}\)
Bài 3a) Ta có: (2x + 1/3)4 \(\ge\)0 \(\forall\)x
=> (2x +1/3)4 - 1 \(\ge\)-1 \(\forall\)x
=> A \(\ge\)-1 \(\forall\)x
Dấu "=" xảy ra <=> 2x + 1/3 = 0 <=> 2x = -1/3 <=> x = -1/6
Vậy Min A = -1 tại x = -1/6
b) Ta có: -(4/9x - 2/5)6 \(\le\)0 \(\forall\)x
=> -(4/9x - 2/15)6 + 3 \(\le\)3 \(\forall\)x
=> B \(\le\)3 \(\forall\)x
Dấu "=" xảy ra <=> 4/9x - 2/15 = 0 <=> 4/9x = 2/15 <=> x = 3/10
vậy Max B = 3 tại x = 3/10
b) \(3^{x+1}=9^x\)
\(3^{x+1}=\left(3^2\right)^x\) c)
\(3^{x+1}=3^{2x}\)
\(\Rightarrow x+1=2x\)
\(1=2x-x\)
\(1=x\)
Vậy x=1
A) X=0
a: \(\Leftrightarrow\left(x+1\right)^2\left[\left(x+1\right)^2-1\right]=0\)
=>(x+1)^2(x+2)*x=0
hay \(x\in\left\{0;-1;-2\right\}\)
b: \(\Leftrightarrow\left(x-2\right)^3\left[\left(x-2\right)^2-1\right]=0\)
=>\(\left(x-2\right)^3\left(x-3\right)\left(x-1\right)=0\)
hay \(x\in\left\{2;3;1\right\}\)
c: \(\Leftrightarrow\left(2x-1\right)^2\left[\left(2x-1\right)^2-1\right]=0\)
=>\(\left(2x-1\right)^2\cdot2x\cdot\left(2x-2\right)=0\)
hay \(x\in\left\{0;\dfrac{1}{2};1\right\}\)