Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Điều kiện xác định \(x\ge0\)
\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)
\(\Leftrightarrow\left(\frac{\sqrt{x}}{2}-\frac{\sqrt{x}}{3}-\sqrt{x}\right)=\frac{1}{2}+\frac{2}{3}-1\)
\(\Leftrightarrow-\frac{5}{6}\sqrt{x}=\frac{1}{6}\Leftrightarrow\sqrt{x}=-\frac{1}{5}\) (vô lí)
Vậy pt vô nghiệm
2/ \(x-\left(\sqrt{x}-4\right)\left(\sqrt{x}-5\right)=-38\)
\(\Leftrightarrow x-\left(x-9\sqrt{x}+20\right)+38=0\)
\(\Leftrightarrow9\sqrt{x}=-18\Leftrightarrow\sqrt{x}=-2\) (vô lí)
Vậy pt vô nghiệm.
1)\(\frac{\sqrt{x}-1}{2}-\frac{\sqrt{x}+2}{3}=\sqrt{x}-1\)
Đặt \(a=\sqrt{x}-1\) ta đc:
\(\frac{a}{2}-\frac{a+3}{3}=a\)\(\Leftrightarrow\frac{a-6}{6}=a\)
\(\Leftrightarrow a-6=6a\)\(\Leftrightarrow a=-\frac{6}{5}\)
\(\Leftrightarrow\sqrt{x}-1=-\frac{6}{5}\)
\(\Leftrightarrow\sqrt{x}=-\frac{1}{5}\)
=>vô nghiệm (vì \(\sqrt{x}\ge0>-\frac{1}{5}\))
A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)
Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)
C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)
Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
h)
ĐK: \(\left\{\begin{matrix} 3x-12\geq 0\\ x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 4\\ x\neq 5\end{matrix}\right.\)
k)
ĐK: \(\left\{\begin{matrix} x-1\geq 0\\ x-2\neq 0\\ x-3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ x\neq 2\\ x\neq 3\end{matrix}\right.\)
m)
ĐK: \(\left\{\begin{matrix} x-2\neq 0\\ x-4\neq 0\\ \frac{2x-3}{x-2}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 2\\ x\neq 4\\ x>2\end{matrix}\right.\) hoặc \(x\leq \frac{3}{2}\)
Lời giải:
a) ĐK: $-4x+16\geq 0\Leftrightarrow x\leq 4$
b) ĐK: \(\left\{\begin{matrix} 2x-1\neq 0\\ \frac{-3}{2x-1}\geq 0\end{matrix}\right.\Leftrightarrow 2x-1< 0\Leftrightarrow x< \frac{1}{2}\)
c) ĐK: $-5x^2\geq 0\Leftrightarrow 5x^2\leq 0$. Mà $5x^2\geq 0$ với mọi $x\in\mathbb{R}$ nên biểu thức có nghĩa khi $5x^2=0\Leftrightarrow x=0$
d) ĐK:
\(\left\{\begin{matrix} -x^2-4x-4\neq 0\\ \frac{-3}{-x^2-4x-4}\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -(x+2)^2\neq 0\\ \frac{3}{(x+2)^2}\geq 0\end{matrix}\right.\Leftrightarrow x\neq -2\)
e) ĐK: $\frac{2x-4}{-3}\geq 0\Leftrightarrow 2x-4\leq 0\Leftrightarrow x\leq 2$
f) ĐK: \(\left\{\begin{matrix} 3x-9\geq 0\\ 2x-8>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 3\\ x>4\end{matrix}\right.\Leftrightarrow x>4\)
a) <=? |(x-1/4)| = 1/4-x
Th1: x >= 1/4 => x - 1/4 = 1/4 - x
<=> 2x = 2.1/4 <=> x = 1/4(nhân)
Th2: x<1/4 => -x + 1/4 = 1/4-x
<=> 0x = 0
<=> x thuộc R và x <1/4.
Vậy S ={x|x<=1/4}
\(\text{a)}\sqrt{x^2-\frac{1}{2}x+\frac{1}{16}}=\frac{1}{4}-x\)
\(\Leftrightarrow\sqrt{x^2-2.x.\frac{1}{4}+\left(\frac{1}{4}\right)^2}=\frac{1}{4}-x\)
\(\Leftrightarrow\sqrt{\left(x-\frac{1}{4}\right)^2}=\frac{1}{4}-x\)
\(\Leftrightarrow x-\frac{1}{4}=\frac{1}{4}-x\)
\(\Leftrightarrow2x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{4}\)
\(\text{b)}\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1}-1\)
\(ĐKXĐ:x\ge-2\)
\(\Leftrightarrow\left(\sqrt{x-2\sqrt{x-1}}\right)^2=\left(\sqrt{x-1}-1\right)^2\)
\(\Leftrightarrow x-2\sqrt{x-1}=\left(\sqrt{x-1}\right)^2-2\sqrt{x-1}+1\)
\(\Leftrightarrow x-2\sqrt{x-1}=x-1-2\sqrt{x-1}+1\)
\(\Leftrightarrow x-2\sqrt{x-1}-x+2\sqrt{x-1}=-1+1\)
\(\Leftrightarrow0x=0\)
Vậy \(S=\left\{x\inℝ|x\ge-2\right\}\)