Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\)
\(\sqrt{x-5}=3\)
\(\Leftrightarrow\)\(x-5=3^2\)
\(\Leftrightarrow\)\(x=14\)
\(b,\)
\(\sqrt{x-10}=-2\)
\(x\)không có giá trị ( vì \(\sqrt{x-10}\ge0\forall\))
\(c,\)
\(\sqrt{2x-1}=\sqrt{5}\)
\(\Leftrightarrow2x-1=\sqrt{5^2}\)
\(\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
\(d,\)
\(\sqrt{4-5x}=12\)
\(\Leftrightarrow4-5x=12^2\)
\(\Leftrightarrow5x=4-144\)
\(\Leftrightarrow5x=-140\)
\(\Leftrightarrow x=-\frac{140}{5}=-28\)
a, \(\sqrt{x-5}=3;ĐK:x-5\ge0\Leftrightarrow x\ge5\)
Ta có: \(\sqrt{x-5}=3\Leftrightarrow x-5=9\Leftrightarrow x=14\)
b, \(\sqrt{x-10}=-2;ĐK:x-10\ge0\Leftrightarrow x\ge10\)
Vì: \(\sqrt{x-10}\ge0\) nên không có giá trị nào của x để \(\sqrt{x-10}=-2\)
c, \(\sqrt{2x-1}=\sqrt{5};ĐK:2x-1\ge0\Leftrightarrow x\ge0,5\)
Ta có: \(\sqrt{2x-1}=\sqrt{5}\Leftrightarrow2x-1=5\)
\(\Leftrightarrow2x=6\Leftrightarrow x=3\)
d, \(\sqrt{4-5x}=12;ĐK:4-5x\ge0\Leftrightarrow x\le\frac{4}{5}\)
Ta có: \(\sqrt{4-5x}=12\Leftrightarrow4-5x=144\)
\(\Leftrightarrow-5x=140\Leftrightarrow x=-28\)
a. ĐKXĐ: \(4-5x\ge0\) \(\Leftrightarrow-5x\ge-4\Leftrightarrow5x\le4\Leftrightarrow x\le\dfrac{4}{5}\)
\(\sqrt{4-5x}=12\)
\(\Leftrightarrow4-5x=2\sqrt{3}\)
\(\Leftrightarrow-5x=-4-2\sqrt{3}\)
\(\Leftrightarrow x=\dfrac{-4-2\sqrt{3}}{-5}\)
\(\Leftrightarrow x=\dfrac{4+2\sqrt{3}}{5}\left(KTMĐKXĐ\right)\)
Vậy x không tồn tại
b. \(10-2\sqrt{2x+1}=4\) (1)
\(ĐKXĐ:2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\ge-\dfrac{1}{2}\)
(1) => \(-2\sqrt{2x+1}=-6\)
\(\Leftrightarrow\sqrt{2x+1}=3\)
\(\Leftrightarrow2x+1=\sqrt{3}\)
\(\Leftrightarrow2x=\sqrt{3}-1\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}-1}{2}\left(TMĐKXĐ\right)\)
c. \(5-\sqrt{x-1}=7\) (1)
ĐKXĐ: \(x-1\ge0\Leftrightarrow x\ge1\)
(1) <=> \(-\sqrt{x-1}=2\) (vô lí)
Vậy không tồn tại x
bài kia làm sai rùi:
a. \(\sqrt{4-5x}=12\) (1)
ĐKXĐ: \(4-5x\ge0\Leftrightarrow x\le\dfrac{4}{5}\)
\(\Leftrightarrow4-5x=144\)
\(\Leftrightarrow5x=-140\)
\(\Leftrightarrow x=-28\left(TMĐKXĐ\right)\)
Vậy phương trình có nghiệm là \(S=\left\{-28\right\}\)
b. \(10-2\sqrt{2x+1}=4\) (1)
ĐKXĐ: \(2x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow2\sqrt{2x+1}=6\)
\(\Leftrightarrow\sqrt{2x+1}=3\)
\(\Leftrightarrow2x+1=9\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\left(TMĐKXĐ\right)\)
Vậy phương trình có nghiệm là: \(S=\left\{4\right\}\)
c. Ở dưới làm đúng rồi
d. \(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\) (1)
ĐKXĐ: \(3x\ge0\Leftrightarrow x\ge0\)
(1) \(\Leftrightarrow10+\sqrt{3x}=\left(2+\sqrt{6}\right)^2\)
\(\Leftrightarrow10+\sqrt{3x}=10+4\sqrt{6}\)
\(\Leftrightarrow\sqrt{3x}=-10+10+4\sqrt{6}\)
\(\Leftrightarrow\sqrt{3x}=4\sqrt{6}\)
\(\Leftrightarrow3x=96\)
\(\Leftrightarrow x=32\left(TMĐKXĐ\right)\)
Vậy phương trình có nghiệm là: \(S=\left\{32\right\}\)
e. \(\sqrt{x+1}+10=2\sqrt{x+1}-2\) (1)
ĐKXĐ: \(x+1\ge0\Leftrightarrow x\ge-1\)
\(\left(1\right)\Leftrightarrow\sqrt{x+1}-2\sqrt{x+1}=-10-2\)
\(\Leftrightarrow-\sqrt{x+1}=-12\)
\(\Leftrightarrow\sqrt{x+1}=12\)
\(\Leftrightarrow x+1=144\)
\(\Leftrightarrow x=143\left(TMĐKXĐ\right)\)
Vậy phương trình có nghiệm là \(S=\left\{143\right\}\)
f. \(\sqrt{16x+32}-5\sqrt{x+2}=-2\) (1)
ĐKXĐ: \(\left[{}\begin{matrix}\sqrt{16x+32\ge0}\\\sqrt{x+2\ge0}\end{matrix}\right.\left[{}\begin{matrix}x\ge-2\\x\ge-2\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{16\left(x+2\right)}-5\sqrt{x+2}=-2\)
\(\Leftrightarrow4\sqrt{x+2}-5\sqrt{x+2}=-2\)
\(\Leftrightarrow-\sqrt{x+2}=-2\)
\(\Leftrightarrow\sqrt{x+2}=2\)
\(\Leftrightarrow x+2=4\)
\(\Leftrightarrow x=2\left(TMĐKXĐ\right)\)
Vậy phương trình có nghiệm là \(S=\left\{2\right\}\)
Bài 1:
a) \(ĐK:\begin{cases}x^2-4\ge0\\x-2\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x^2\ge4\\x-2\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge2;x\ge-2\\x\ge2\end{cases}\)\(\Leftrightarrow x\ge2\)
\(\sqrt{x^2-4}+2\sqrt{x-2}=\sqrt{\left(x-2\right)\left(x+2\right)}-2\sqrt{x-2}=\sqrt{x-2}\cdot\left(\sqrt{x+2}-2\right)\)
b) \(ĐK;\begin{cases}x+3\ge0\\x^2-9\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-3\\x^2\ge9\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge-3\\x\ge3;x\ge-3\end{cases}\)\(\Leftrightarrow x\ge3\)
\(3\sqrt{x+3}+\sqrt{x^2-9}=2\sqrt{x+3}+\sqrt{\left(x-3\right)\left(x+3\right)}=\sqrt{x+3}\left(2+\sqrt{x-3}\right)\)
baif 2: a) \(\sqrt{x-5}=3\) diều kiện x>=5
pt<=> x-5=9<=>x=14 (thỏa)
b) \(\sqrt{x-10}=-2\) diều kiện x>=10
nhưng ta thầy VT>=0 mà VP<0=> pt trên vô nghiệm
c) \(\sqrt{2x-1}=\sqrt{5}\) diều kiện x>=1/2
pt<=>\(2x-1=5\)<=> x=3(thỏa)
d) \(\sqrt{4-5x}=12\) điều kiện x<=4/5
pt<=> 4-5x=144<=> x=-28 (loại)
Bài 1:a) điều kiện x^2-4>=0 và x-2>=0
<=> x<=-2,x>=2 và x>=2
=> điều kiện là x>=2
b)điều kiện x+3>=0 và x^2-9>=0
<=> x>=-3 và x<=-3, x>=3
=> điều kiện là > x>=3
Bài 1:
a, \(\sqrt{2x-1}=5\Rightarrow2x-1=25\Rightarrow2x=25+1=26\) \(\Rightarrow x=26:2=13\)
b,\(\sqrt{4\left(x-1\right)}=12\Rightarrow4\left(x-1\right)=12^2=144\)\(\Rightarrow x-1=144:4=36\Rightarrow x=36+1=37\)
c,\(\sqrt{x^2-6x+9}=5\Rightarrow\sqrt{\left(x-3\right)^2}=5\)\(\Rightarrow\left|x-3\right|=5\Rightarrow\left[{}\begin{matrix}x-3=5\\3-x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
Bài 2:
a, Để căn thức trên có nghĩa\(\Rightarrow2x-\dfrac{1}{3}\ge0\Rightarrow2x\ge\dfrac{1}{3}\Rightarrow x\ge\dfrac{1}{3}:2=\dfrac{1}{6}\)
Vậy để căn thức trên có nghĩa thì x>= 1/6
b, x<= 5/3
c, -1<=x<5
d, x>=6; x<=-1
Mình k chắc có đúng ko đâu
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)
a) điều kiện : \(x-5\ge0\Leftrightarrow x\ge5\)
\(\sqrt{x-5}=3\Leftrightarrow\left(\sqrt{x-5}\right)^2=3^2\Leftrightarrow\left|x-5\right|=9\Leftrightarrow x-5=9\)
\(\Leftrightarrow x=9+5\Leftrightarrow x=14\) vậy \(x=14\)
b) điều kiện : \(x-10\ge0\Leftrightarrow x\ge10\)
\(\sqrt{x-10}=-2\) ta có : \(\sqrt{x-10}\ge0\) với mọi \(x\)
\(\Rightarrow\sqrt{x-10}=-2\) là vô nghiệm
c) điều kiện : \(2x-1\ge0\Leftrightarrow2x\ge1\Leftrightarrow x\ge\dfrac{1}{2}\)
\(\sqrt{2x-1}=\sqrt{5}\Rightarrow2x-1=5\Leftrightarrow2x=5+1\Leftrightarrow2x=6\)
\(\Leftrightarrow x=\dfrac{6}{2}\Leftrightarrow x=3\) vậy \(x=3\)
d) điều kiện : \(4-5x\ge0\Leftrightarrow5x\le4\Leftrightarrow x\le\dfrac{4}{5}\)
\(\sqrt{4-5x}=12\Leftrightarrow\left(\sqrt{4-5x}\right)^2=12^2\Leftrightarrow\left|4-5x\right|=144\)
\(\Leftrightarrow4-5x=144\Leftrightarrow-5x=144-4\Leftrightarrow-5x=140\Leftrightarrow x=\dfrac{140}{-5}\)
\(\Leftrightarrow x=-28\) vậy \(x=-28\)
Hướng dẫn giải:
a) ĐS: -√3. b) ĐS: 3434(a - 3).
c) √9+12a+4a2b29+12a+4a2b2 = √(3+2a)2b2(3+2a)2b2 = √(3+2a)2b2(3+2a)2b2 = |3+2a||b||3+2a||b|
Vì b < 0 nên |b||b| = -b.
Vì a > -1,5 nên 3 + 2a > 0. Do đó = 3+ 2a.
Vậy √9+12a+4a2b29+12a+4a2b2 = -3+2ab3+2ab.
d) ĐS: -√ab